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End-to-End Learning for Uplink MU-SIMO Joint
Transmitter and Non-Coherent Receiver Design in

Fading Channels
Songyan Xue, Yi Ma, and Na Yi

Abstract—In this paper, a novel end-to-end learning approach,
namely JTRD-Net, is proposed for uplink multiuser single-input
multiple-output (MU-SIMO) joint transmitter and non-coherent
receiver design (JTRD) in fading channels. The basic idea lies in
the use of artificial neural networks (ANNs) to replace traditional
communication modules at both transmitter and receiver sides.
More specifically, the transmitter side is modeled as a group
of parallel linear layers, which are responsible for multiuser
waveform design; and the non-coherent receiver is formed by
a deep feed-forward neural network (DFNN) so as to provide
multiuser detection (MUD) capabilities. The entire JTRD-Net can
be trained from end to end to adapt to channel statistics through
deep learning. After training, JTRD-Net can work efficiently in
a non-coherent manner without requiring any levels of channel
state information (CSI). In addition to the network architecture, a
novel weight-initialization method, namely symmetrical-interval
initialization, is proposed for JTRD-Net. It is shown that the
symmetrical-interval initialization outperforms the conventional
method (e.g. Xavier initialization) in terms of well-balanced
convergence-rate among users. Simulation results show that the
proposed JTRD-Net approach takes significant advantages in
terms of reliability and scalability over baseline schemes on
both i.i.d. complex Gaussian channels and spatially-correlated
channels.

Index Terms—End-to-end learning, multiuser single-input
multiple-output (MU-SIMO), joint transmitter and receiver de-
sign, multiuser detection (MUD), weight initialization.

I. INTRODUCTION

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO)
technology can significantly improve the system

capacity, spectral efficiency and link reliability by exploiting
the spatial-domain degrees of freedom [1]. Due to these
advantages, MIMO technology has been applied in a wide
range of wireless communication standards including IEEE
802.11n, Long Term Evolution (LTE), and 5G new radio (NR)
[2]. To take full advantage of the spatial multiplexing-gain,
most approaches require accurate channel estimation at
the base station, which can be carried out by periodically
transmitting pilot sequences [3]. However, the channel
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estimation procedure can introduce considerable latency
and training overhead. The training overhead scales linearly
with the number of user terminals (UTs) [4]. Moreover, the
maximum number of UTs served in the multiuser system
is limited by the number of orthogonal pilot sequences.
This restriction on the availability of orthogonal resources
forces the reuse of pilots for UTs in different cells. One
of the main consequences of pilot-signal reuse is the pilot
contamination, which has become a fundamental performance
bottleneck in large-scale MIMO systems. A good overview
of schemes to tackle this problem can be found in [5] and
references therein, including pre-coding, semi-blind, and
blind estimation methods.

As an alternative, non-coherent MIMO communication sys-
tems have attracted great attention [6]–[9], since they require
no prior knowledge of instantaneous channel state information
(CSI) at either transmitter or receiver side. In this case, the
common practice is to form the transmit signal in a way
that permits accurate detection in the presence of channel
uncertainty, e.g., differential encoding [10], space-time codes
[11], [12]. The former provides unambiguous signal reception
by using modulation schemes (e.g. phase-shift-keying (PSK))
to ensure time-domain dependence of the transmitted signal.
The latter is shown to be capacity-achieving in high signal-to-
noise ratio (SNR) regime for block Rayleigh fading channels
[7], [13]. The idea is to carry the information in a subspace
of the transmitted signal block which makes it invariant to the
channel matrix multiplication, and such a subspace belongs to
the Grassmannian manifold [7]. However, its computational
complexity grows exponentially with the size of the decision
region, which makes it unrealistic in real practice. To achieve
the best performance-complexity trade-off, a group of sub-
optimal detection algorithms has been proposed for Grassman-
nian constellations [14]–[16].

Owning to its powerful data learning capability, deep
learning technology has achieved significant success in wide
range of fields of applications, including natural language
processing, image processing, computer vision, and many
others. Recently, it has been applied to wireless commu-
nication physical layer, such as signal detection [17]–[20],
channel coding [21]–[23], and channel estimation [24]–[26].
A relatively comprehensive survey of deep learning techniques
for wireless communication systems can be found in [27].
More importantly, deep learning enables a low-complexity
end-to-end optimization of communications systems. The idea
is to represent transmitter and receiver as neural networks and
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interpret the whole system as an autoencoder, which can be
trained in a supervised manner using learning algorithms [28].
Compared with traditional block-level system design, the end-
to-end learning of a communication system is more likely
and much easier to ascertain global optimality particularly in
complicated communication scenarios [29]. This is because
the individual blocks therein are separately designed and
optimized with different assumptions and objectives. Also,
such a design highly relies on the mathematical model of
wireless channel, which cannot always correctly or accurately
reflect the actual propagation scenario, thereby compromising
the system performance. Besides, it has been shown that a
learned communications system can work efficiently without
requiring any levels of CSI at both transmitter and receiver
sides [28], [30], [31]. Specifically for MIMO systems, in [32],
the authors proposed a joint modulation and signal detection
approach for single-user MIMO system. In [33], deep learning-
based multiuser single-input multiple-output (MU-SIMO) joint
transmitter and receiver design outperforms the minimum
mean-square-error (MMSE) receiver in small-size MU-SIMO
systems. In [34], an autoencoder-based approach outperforms
the orthogonal frequency division multiplexing with index
modulation (OFDM-IM) in energy-based MU-SIMO systems.

Despite their advantages, current solutions are still chal-
lenged by the signal processing scalability with respect to the
size of MU-SIMO networks. It has been shown that most of the
existing solutions can only work efficiently for special cases
such as MU-SIMO with small size (e.g. 2 × 4) and low data
rate [32], [33]. Our preliminary work in [35] has explored
the potential of applying end-to-end learning in large-size
MU-SIMO systems. Moreover, current solutions only consider
simple channel models (i.i.d. complex Gaussian channel). To
the best of our knowledge, none of the existing works has
investigated the impact of channel correlation on the end-to-
end learning in MU-SIMO systems.

Motivate by the above observations, we explore the feasi-
bility of providing a scalable and robust solution for uplink
MU-SIMO joint transmitter and non-coherent receiver design.
Major contributions of this paper include:
• The development of a novel end-to-end learning approach

for uplink MU-SIMO systems, namely JTRD-Net. In
JTRD-Net, transmitters are modeled as a group of par-
allel linear layers, which are responsible for multiuser
waveform design; and the non-coherent receiver is formed
by a deep feed-forward neural network (DFNN) so as
to provide multiuser detection (MUD) capabilities. The
entire JTRD-Net can be trained from end to end through
deep learning. After training, JTRD-Net can work ef-
ficiently in a non-coherent manner. Simulation results
show that JTRD-Net outperforms baseline schemes on
both i.i.d. complex Gaussian channels and spatially-
correlated channels. More interestingly, it is shown that
channel correlation benefits end-to-end learning in terms
of reliability and training complexity.

• The analysis of computational complexity for the pro-
posed JTRD-Net. It is shown that JTRD-Net has a simple
network architecture with only feed-forward neural net-
works. Therefore, the computational complexity is mainly

dominated by matrix multiplication, i.e., it bypasses ma-
trix inversions or factorizations which are needed for most
of the conventional non-coherent detection approaches.

• The development of a novel weight initialization
method for the proposed JTRD-Net, namely symmetrical-
interval weight initialization. It is shown that the
symmetrical-interval initialization outperforms the con-
ventional method (e.g., Xavier initialization) in terms of
well-balanced convergence-rate among different UTs.

The rest of this paper is organized as follows. Section
II presents the system model and preliminaries. Section III
presents the novel JTRD-Net approach with detailed training
procedure and complexity analysis. Simulation results are
presented in Section IV; and finally, Section V draws the
conclusion.

Notation: Regular letter, lower-case bold letter, and capital
bold letter represent scalar, vector, and matrix, respectively. R
represents the real field and C represents the complex field.
<(·) and =(·) represent the real and imaginary parts of a
complex number, respectively. The superscripts (·)T , (·)H ,
and (·)−1 represent the transpose, Hermitian, and inverse of a
vector/matrix, respectively. |·|, ‖·‖ represent the absolute value,
and the `2-norm, respectively. E [·], p(·), det(·), and log(·)
represent the expectation, the probability, the determinant and
the logarithm function, respectively. tr {A} is the trace of
matrix A. The operator vec{A} stacks all columns of the
matrix A on top of each other, from left to right. The notation
‖z‖2A denotes the operation of zHAz.

II. SYSTEM MODEL AND PRELIMINARIES

A. MU-SIMO Uplink System Model
Consider MU-SIMO uplink communications, where M UTs

simultaneously communicate to an uplink access point (AP)
with N receive antennas (N ≥ M ). The MU-SIMO channel
is assumed to be block-fading, i.e., the channel remains
constant with a coherent block of length T > 1 and changes
independently between blocks, and each UT employs a single
transmit-antenna to send a fixed number of data streams.
Within a coherent block, each UT sends a signal vector xm,
and the received signal at the AP is described by the following
matrix form

Y = XH + V (1)

where Y ∈ CT×N is the received signal block over T coherent
intervals, X , [x1,x2, . . . ,xM ] ∈ CT×M is the transmitted
signal block, H ∈ CM×N is the MU-SIMO channel matrix,
V ∈ CT×N is the matrix of additive white Gaussian noise
(AWGN).

We will work under the following assumptions:
1) The MU-SIMO channel matrix H is unknown at both

transmitter and receiver, and no stochastic model is
assumed for it.

2) The transmitted signal block X is randomly drawn
from a finite alphabet set A = {X1,X2, ...,XK},
with equal probability. Let xm ∈ CT×1 be the mth

column of X, the average transmit power of each UT
is regularized by E

[
xH
mxm

]
≤ αmP , where αm ≥ 0

satisfy
∑M

m=1 αm = T , and P is the power budget.
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3) Each element in noise matrix V is independently drawn
from CN (0, σ2), where σ2 is the noise variance, and
Φ = E

[
VVH

]
denotes the noise covariance matrix.

B. Conventional Non-Coherent Detection and Problem For-
mulation

Based on the system model and the above assumptions,
non-coherent MU-SIMO receiver faces a multiple hypothesis
testing problem which can be solved by [36]

X̂k = argmin
Xk∈A

∥∥∥y − (IN ⊗Xk) ĥk

∥∥∥2
Φ−1

(2)

where
ĥk =

(
XH

k X k

)−1
XH

k Φ−1/2y (3)

and
X k = Φ−1/2 (IN ⊗Xk) (4)

where y = vec{Y}, IN stands for the (N) × (N) identity
matrix, and A ⊗ B for the Kronecker product between A
and B. The detection can be implemented by employing K
parallel processors with each process corresponds to a specific
codeword Xk, 1≤k≤K , and computes the likelihood ratio of
each codeword. In order to achieve more accurate estimates
of the transmitted signal block, the codebook A needs to be
carefully designed. We first consider the simplest case that the
codebook only have two codewords (e.g. Xi and Xj , i6=j).
Let P(Xi → Xj) be the probability of misclassification in
noiseless case, i.e., the detector mistakenly deciding Xj when
Xi is transmitted, as

P(Xi → Xj) = P
(
‖di‖2 > ‖dj‖2

)
(5)

where

du = Φ−1/2
(
y − (IN ⊗Xu) ĥu

)
= Φ−1/2y −X uĥu, for u = i, j (6)

Since Xi is transmitted, then we have

y = (IN ⊗Xi)h + v (7)

where h = vec{H}, and v = vec{V}. Plugging (6) and (7)
in (5) yields [8]

P(Xi → Xj) = P
(
wH (Γi − Γj)w−2<

(
wHΓjX ih

)
> λ

)
(8)

where
w = Φ−1/2v (9)

denotes the zero-mean white Gaussian noise, and

Γu = INT −X u(XH
u X u)

−1XH
u , for u = i, j (10)

is the orthogonal projector onto the orthogonal complement of
the column space of X i(j), and

λ = hHXH
i ΓjX ih. (11)

The probability in (8) cannot be easily calculated. Consider
the operation at high-SNR regime, and the quadratic term

of w is negligible [37]. Therefore, we have the following
approximation

P(Xi → Xj) ≈ P
(
− 2<

(
wHΓjX ih

)
> λ

)
≈ Q

( 1√
2

√
hHLijh

)
(12)

where

Lij = XH
i

(
INT −X j

(
XH

j X j

)−1
XH

j

)
X i (13)

and Q(·) is the Q-function. (12) shows that the probability of
misclassification depends on the channel realization h and the
relative geometry of the codewords X i and X j . Since the Q-
function is monotonically non-increasing, using the inequality
[8]

hHLijh ≥ λmin,Lij
‖h‖2 (14)

where λmin,Lij
denotes the minimum eigenvalue of the Hermi-

tian matrix Lij . We can obtain the upper bound at high-SNR
regime

P(Xi → Xj) ≤ Q
( 1√

2
‖h‖

√
λmin,Lij

)
(15)

From (15) we know that the pairwise error probability (PEP)
is decided by the fading channel h as well as Lij , where
the latter is directly decided by the codewords. In order to
minimize the PEP, (15) shows that we can either maximize
‖h‖ or λmin,Lij . Since we cannot control the gain of wire-
less channel h, the only solution is to design a codebook
that maximizing λmin,Lij

. However, such a joint codebook
optimization problem is mathematically challenging since it
is a high-dimensional and non-linear problem [36]. Never-
theless, the optimization in (15) is a sub-optimal solution
in nature compared with the maximum-likelihood sequence
detection (MLSD) algorithm. Motivated by the above facts,
we fundamentally rethink the joint transmit and non-coherent
receiver optimization problem in MU-SIMO systems, and con-
sider deep learning technique as a potential solution. This is
because: 1) deep learning has demonstrated remarkable perfor-
mance in end-to-end design of point-to-point communications
[28]; 2) deep learning based MUD can achieve near-optimal
performance in various scenarios [17]–[20]; 3) most of the
deep learning algorithms have parallel computing architecture
in nature, which means the computational complexity can be
well handled by employing the high-performance computing
technologies, e.g., Graphical processing unit (GPU) and field
programmable gate array (FPGA).

III. END-TO-END LEARNING FOR MU-SIMO SYSTEM

In this section, we first introduce the proposed end-to-end
learning approach for uplink MU-SIMO joint transmitter and
non-coherent receiver design, namely JTRD-Net. Afterward,
the training procedure and computational complexity analysis
are provided.
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Fig. 1. Block diagram of the proposed JTRD-Net approach.

A. JTRD-Net Architecture

Fig. 1 illustrates the block diagram of the proposed JTRD-
Net approach for uplink MU-SIMO joint transmitter and
non-coherent receiver design. In JTRD-Net, both multiuser
transmitters and non-coherent receiver are designed by using
neural networks. Specifically, the transmitter is modeled as
a group of parallel linear layers with each followed by a
normalization function. The input to the linear layer is a one-
hot vector sohm ∈ R(L)×(1), 1≤m≤M , which is obtained by
one-hot encoding [38] the binary information-bearing vector
sm ∈ R(J)×(1), 1≤m≤M , where J = log2 L is the number of
information bits per codeword. For instance, two information-
bits can be encoded as

00→ 0001, 01→ 0010, 10→ 0100, 11→ 1000

The output of the linear layer is zm = Wmsohm , 1≤m≤M ,
where Wm stands for the weighting matrix. Here the linear
layer does not need a bias node, because the weighting matrix
can be regarded as codebook independently. Adding a bias
node is equivalent to add the same vector to each column
of the codebook, which does not make any sense in joint
codebook design. Besides, the one-hot vector can be viewed
as a codeword selector, which picks one column from Wm

according to the information-bearing vector sm; and Wm

is the user-specific codebook. It is worth noting that most
of the existing deep learning algorithms are based on real-
valued operations, but the wireless communication systems
are normally modeled as complex-valued symbols [33] (e.g.
constellations and channel coefficients). To facilitate the learn-
ing and communication procedure, it is common practice (see
[17]–[20], [28]) to convert complex signals to their real signal
equivalent version by 1

areal =

[
<(a)
=(a)

]
(16)

1In the rest of this paper, we do not use the doubled size for the sake of
mathematical notation simplicity.

Therefore, we have Wm ∈ R(2T )×(L) and zm ∈ R(2T )×(1),
which are equivalent to their complex-valued form Wm ∈
C(T )×(L) and zm ∈ C(T )×(1), where T is the coherent-block
length as we introduced in (1). Before transmitting through
the channel, zm needs to be normalized in order to meet the
power constraint, which is given by

xm = fnorm(zm)

=
√
αmP ·

zm√∑
‖zm‖2

(17)

where αm and P are the power-constraint parameters. The
transmit signal is expressible as

X = [x1,x2, . . . ,xM ]T (18)

According to the system model in (1), the received signal is
given by

y = xT · (IT ⊗Hreal) + vreal (19)

where x = vec{X} ∈ R(2MT )×(1), vreal ∈ R(2NT )×(1) stands
for the AWGN vector, and

Hreal =

[
<(H) −=(H)
=(H) <(H)

]
(20)

for the channel matrix in its real-valued equivalent form. At
the receiver side, y is utilized as the input to the non-coherent
deep neural network (DNN) receiver. The non-coherent DNN
receiver is modeled as a FDNN with three hidden layers.
The activation function for the hidden layers is the rectified
linear unit (ReLU), and for the output layer is standard
logistic function (Sigmoid). The final output of the JTRD-Net
ŝall ∈ R(JM)×(1) is the estimate of the original information-
bearing vectors.
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B. Training Procedure of JTRD-Net

The entire JTRD-Net can be trained from end-to-end with
the aim of minimizing the following binary cross-entropy cost
function

J(ϕ) = − 1

|B|

|B|∑
i=1

(
s
(i)
all log ŝ

(i)
all+(1−s

(i)
all) log(1−ŝ

(i)
all)
)

(21)

where B stands for the training mini-batch with size of B, the
superscript for the index, and ϕ = {W,b} for the trainable
parameters in the JTRD-Net. Moreover, sall ∈ R(JM)×(1) is
the reference training target, which is obatined by concatenat-
ing all information-bearing vectors as

sall = [sT1 , s
T
2 , . . . , s

T
M ]T (22)

The difference between the training of JTRD-Net and other
deep learning applications is that the channel matrix H needs
to be considered in the back-propagation (BP) procedure.
Otherwise, the linear layers at the transmitter side can not
obtain correct gradients for parameter updating. To elaborate
a little further, we assume the gradient of the received signal
y is ∇yJ(ϕ) ∈ R(2NT )×(1). 2 Here we skip the introduction
of calculating the gradient for the receiver-side hidden layers,
since it can be easily obtained by utilizing standard BP algo-
rithm. In order to update the transmitter-side neural networks,
we need to calculate the gradient for the transmitted signal
block. To this end, channel matrix is assumed to be known at
the training stage, then the gradient of the transmitted-signal
block is expressible as

∇xJ(ϕ) = (IT ⊗Hreal) · ∇yJ(ϕ) (23)

Note that the above assumption does not affect the non-
coherent detection, since the channel knowledge is only uti-
lized for backpropagation at training stage. After training, the
entire JTRD-Net can still work efficiently in a non-coherent
manner without requiring any levels of CSI. The gradient of
each transmitted signal-block can be obtained by reshaping
∇xJ(ϕ) ∈ R(2MT )×(1) to a (2T ) × (M) matrix in a row-
major order, and the mth column of the matrix is the gradient
of xm, i.e., ∇xmJ(ϕ) ∈ R(2T )×(1), 1≤m≤M . Afterwards, the
gradient of the weighting matrix on each linear layer can be
computed by

∇WmJ(ϕ) =
(
∇xmJ(ϕ)� f ′norm(zm)

)
· sohm

T
(24)

where � stands for point-wise multiplication, and f ′norm(zm)
for the derivative of the normalization function which is given
by

f ′norm(zm) =
∂

∂zm

(√
αmP ·

zm√∑
‖zm‖2

)

=
√
αmP ·

(
1(2T,1) ⊗

∑
‖zm‖2

)
− zm(∑

‖zm‖2
)3/2 (25)

2The training batch is not considered to simplify the mathematical expres-
sions.

where 1(2T,1) stands for an all-one vector with size of
(2T ) × (1). Moreover, the training procedure does not need
to be implemented to the one-hot encoding function, because
it consists of no trainable parameters and can be viewed as a
bijective mapping between sm and sohm .

C. Complexity Analysis

Define b as the size of the mini-batch, the computational
complexity for the JTRD-Net is approximately O(b(4JMT +
LhN

2T 2 + LhM)) in the training procedure (T ≥ M ),
and O(4JMT + LhN

2T 2 + LhM) in the communication
procedure, where J stands for the number of information bits
per codeword per user and Lh for the number of neurons on the
receive-DNN hidden layer which might vary with the size of
the MU-SIMO network. The complexity is mainly dominated
by matrix multiplications. To put this in perspective, the
expectation propagation (EP) based non-coherent MU-SIMO
detection normally has a computational complexity around
O(M72Kniteration) [39], where niteration is the number of
detection iterations. The maximum-likelihood detection for
Grassmannian modulation has a complexity of O(2MK) dom-
inated by an exhaustive search. It has been shown, in the liter-
ature, that most of the conventional approaches can only work
efficiently when spatial-domain user load is relatively low (e.g.
M = 4). Also, the coherent block length T has to be much
larger than M (e.g. T > 2M ). In the simulation, we will show
that the proposed JTRD-Net is scalable in term of the spatial-
domain user load, and the coherent block length does not need
to be that long. Moreover, recall that the proposed JTRD-Net
approach is mainly formed by neural networks, it fits into the
trend of high-performance computing technologies that highly
rely on parallel processing to improve the computing speed,
the capacity of multi-task execution as well as the computing
energy-efficiency. This is an important feature as it equips the
receiver with a great potential of providing ultra-low latency
and energy-efficient signal processing that is one of the key
requirements for future wireless networks [40].

IV. SIMULATION RESULTS

This section presents the simulation result and performance
analysis. The data sets and implementation details are intro-
duced at the beginning, followed by the introduction of the
proposed weight initialization method. Afterwards, a compre-
hensive performance evaluation is provided, which demon-
strates the performance of the proposed JTRD-Net approach.

A. Data set and Implementation Details

In traditional artificial intelligence (AI) applications in-
cluding image classification and nature language processing,
learning algorithms and models depend heavily on training
data-set (e.g. MNIST [41], MS-COCO [42], and CIFAR-10
[43]). In many cases, it is very difficult to build training data-
sets that are large enough to meet the training requirements.
However, this problem can be easily solved in the wireless
communication domain, since we are dealing with artificially
manufactured data (e.g. modulation and coding) which can be
accurately generated. Therefore, we would like to define the
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data generation routines instead of giving a specific training
dataset in this work.

As far as supervised learning is concerned, the training data-
set consists of a number of randomly generated pairs. The
training input is a group of one-hot vectors sm, 1≤m≤M , and
the referenced training target is a binary vector sall as we
introduced in (19). For each training iteration, channel matrix
is randomly generated subject to specific channel models.
In this work, we considered three different channel models,
including i.i.d. complex Gaussian MIMO channel, Kronecker
MIMO channel, and 3GPP 3D MIMO channel. Specifically,
each element of the i.i.d. complex Gaussian MIMO channel
HR is hij ∼ NC(0, 1/M), while the Kronecker MIMO
channel is described by

HK = R
1/2
R HWR

1/2
T (26)

where RT and RR denote the transmitter and receiver side
spatial-correlation matrices, respectively, and HW is inde-
pendently and identically distributed as circular-symmetric
complex Gaussian with zero-mean and unit variance, which
is generated according to the exponential correlation model in
[44] with the same correlation coefficient ρ. For the case of
realistic channels, we consider 3GPP 3D MIMO channel [45],
and implemented in QuaDRiGa channel simulator [46]. The
AP is assumed to be equipped with 4 dual-polarized antennas
with a height of 25m. The sector coverage is 120◦, and 4
single-antenna UTs are randomly dropped with a radius range
of 500m. Users are modeled to move along a linear trajectory
with a speed of 1 m/s. Besides, perfect power control is
assumed, which normalizes the average received power across
antennas to one.

At each training iteration, we randomly generate a group
of user-specific information-bearing bits as well as a MU-
SIMO channel matrix. In the evaluation stage, network is
tested until the number of error bits reaches a certain threshold,
e.g., 1,000. The network is trained by using standard BP [47]
with the mini-batch gradient descent algorithm, and the size
of the mini-batch is set to be 100. To train the network well,
Adam optimizer [48] is also utilized with an initial learning
rate of 0.001. With the number of training epoch increases, we
dynamically decrease the learning rate until reaching a given
threshold, which can be expressed as

ηnepoch
= max(ηi/ 4

√
niteration, ηlow) (27)

where ηi stands for the initial learning rate, niteration for the
number of training epoch, and ηlow for the lower bound of the
learning rate, which is set to be 10−5 in this work; as we found
that a smaller learning rate can achieve better convergence
performance particularly at the later training stage.

All simulations are run on a Dell PowerEdge R730 2x8-
Core E5-2667v4 server, and implemented in Matlab. We
release our source code at github.com/jtrdnet/source code.

Remark 1. One of the reviewers pointed out that the simulated
system considers the use of a practical but relatively small
number of antennas compared to massive-MIMO systems.
The training complexity and memory requirement might grow
significantly with the increase of antenna size. This is indeed a
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Fig. 2. The convergence performance of the Xavier initialization (left) and
the proposed symmetrical-interval initialization method (right).

very important issue for the feedforward network. A potential
approach is to employ the bi-directional long short-term mem-
ory (bi-LSTM) structure to improve the training scalability;
and this could be a very good research direction for future
work.

B. Weight Initialization

In addition to the above settings, we proposed a novel
weight initialization method for the transmitter-side linear lay-
ers in the JTRD-Net. It is well known that weight initialization
plays an important role in neural network training, since it
directly affects the convergence performance. Traditional ini-
tialization method such as Xavier initialization [49], randomly
generates the coefficients of weighting matrices by using the
following heuristic

Wij ∼ U
(
0,

1√
n

)
(28)

where U(a, b) denotes the uniform distribution in the interval
of (a− b, a+ b), and n is the size of the input to the current
layer. Although Xavier initialization has been demonstrated to
achieve fast convergence performance in many deep learning
applications, it is not a good solution for the proposed JTRD-
Net approach. The reason is that the initialized coefficients
might differ by orders of magnitude, which will result in
unbalanced training among different users; as shown in Fig.
2-(left). To tackle this issue, we proposed a modified weight-
initialization method for JTRD-Net, namely symmetrical-
interval initialization, which generates the coefficients by using
the following heuristic

Wij ∼
(
U
(
− 1√

n
, ζ
)
∪ U

( 1√
n
, ζ
))

(29)

where ζ is an arbitrary number with at least one order of mag-
nitude smaller than 1/

√
n. By such means, the convergence

among different users can be largely improved; as shown in
Fig. 2-(right) that all users are able to achieve a balanced
convergence performance. It is perhaps worth noting that the
proposed method seems require much more training iterations
than the conventional method. This is due to the fact that the
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Fig. 3. BER performance of the proposed JTRD-Net approach versus the
number of layers in non-coherent DNN receiver with different transmission-
rates under 4-by-8 i.i.d. complex Gaussian MIMO channels.
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Fig. 4. BER performance of the proposed JTRD-Net approach versus the
number of layers in non-coherent DNN receiver with different transmission-
rates under 4-by-8 Kronecker MIMO channels.

conventional method quickly drops to a local minima, as we
can see two users occupy nearly all the resources and other
users fail to transmit their information.

C. Simulations and Performance Evaluation

In this section, we study the performance of the proposed
JTRD-Net approach under various channel models. The per-
formance is evaluated using the bit error rate (BER) averaging
over sufficient Monte-Carlo trials of block fading channels,
and compared to wide range of baselines under different
scenarios. The SNR of the system, defined as

SNR =
E ‖Hxm‖2

E ‖vm‖2
(30)

is to measure the noise level.
1) Analysis of Network Size: Fig. 3, Fig. 4 and Fig.

5 illustrate the BER performance of the proposed JTRD-
Net approach versus the number of layers in non-coherent
DNN receiver with different transmission rates (e.g. 2
bits/codeword/user and 4 bits/codeword/user) under different
channel models. Besides, two training SNRs are considered
(e.g. SNR = 9 dB and 12 dB for i.i.d complex Gaussian
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Fig. 5. BER performance of the proposed JTRD-Net approach versus the
number of layers in non-coherent DNN receiver with different transmission-
rates under 4-by-8 3GPP MIMO channels.

TABLE I
LAYOUT OF THE JTRD-NET

JTRD-Net Layer Output dimension
Input L

Transmitter Dense + Linear 2T
Normalization 2T
Concatenation 2NT
Dense + ReLU 1024

Receiver Dense + ReLU 512
Dense + ReLU 256
Dense + Sigmoid JM

channels and Kronecker channels, and SNR = 21 dB and 24
dB for 3GPP MIMO channel); the system environment is 4-
by-8 MU-SIMO. It is shown that JTRD-Net converges within
four layers under both channel models. Further increases layers
can not improve the detection performance as the BER curve
converges to a certain value. Besides, it is shown that lower
transmission-rate is more sensitive to the change of SNRs,
because the gap between the bottom two curves is much larger
than the other one. Based on these results, the number of layers
in non-coherent DNN receiver is set to be 4 in the following
simulations.

2) Analysis of Coherent Block Length: Fig. 6 illustrate
the average BER performance of the proposed JTRD-Net ap-
proach versus the length of coherent block under 4-by-4 i.i.d.
complex Gaussian MIMO channels. The aim is to investigate
the effects of coherent-block length on the detection perfor-
mance. It is shown that the detection performance increases
with the length of the coherent block. This phenomenon is
easy to understand since the time-domain degree of freedom
introduces power gain to the signal detection. It is worth noting
that the pilot-based channel estimation approach requires at
least T = M = 4 time slots to estimate channel. Therefore,
the minimum coherent-block length for pilot-based solutions
is T = M + 1. To facilitate the performance comparison in
the following simulations, we set the length of coherent block
to be M + 1.

3) i.i.d. complex Gaussian Channels: This section aims
to investigate the BER performance of the proposed JTRD-
Net approach with different system configurations under i.i.d.
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channels.
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Fig. 7. Average BER performance comparison of the proposed JTRD-Net
approach versus other MIMO detection algorithms with different transmission-
rates under 4-by-4 i.i.d. complex Gaussian MIMO channels.

complex Gaussian MIMO channels. Due to the lack of com-
parable algorithms, the performance of the proposed JTRD-
Net approach is compared with pilot-based channel estimation
approaches, e.g., MMSE channel estimation (MMSE-CE) with
MMSE equalization or MLSD algorithm, and a conventional
hand-engineered non-coherent detection approach, e.g., POCIS
[39]. The layout of the JTRD-Net is listed in Table I, which
is obtained by trying different combinations; and the above
setup is believed to offer the best training performance.

Fig. 7 illustrates the BER performance of the JTRD-Net
approach with different data rates under 4-by-4 i.i.d. complex
Gaussian MIMO channels. The network is trained at SNR
of 12 dB in 2 bits/codeword/user case and 15 dB in 4
bits/codeword/user case. For 2 bits/codeword/user, it is shown
that the POCIS detector slightly outperforms the MMSE-
CE with MLSD at low SNR regime. The proposed JTRD-
Net approach outperforms the baseline schemes for at least
3.2 dB at high SNR regime. The gain mainly comes from
the joint transmitter and receiver optimization process. For 4
bits/codeword/user, similar phenomenons have been observed.
The performance gap between the POCIS detector and the
MMSE-CE with MLSD increases to approximately 4 dB
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Fig. 8. Average BER performance comparison of the proposed JTRD-Net
approach versus other MIMO detection algorithms with different transmission-
rates under 4-by-8 i.i.d. complex Gaussian MIMO channels.
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Fig. 9. Average BER performance comparison of the proposed JTRD-Net
approach versus other MIMO detection algorithms with different transmission-
rates under 8-by-8 i.i.d. complex Gaussian MIMO channels.

at high SNR. Meanwhile, the proposed JTRD-Net approach
still largely outperforms conventional baselines. but the per-
formance gap between JTRD-Net and POCIS is reduced to
approximately 3 dB at high SNR. This is potentially due to the
increasing data rate introduces additional training complexity
for joint waveform design, i.e., the decision region has been
largely increased.

Fig. 8 illustrates the BER performance of the JTRD-Net
approach with different data rates under 4-by-8 i.i.d. com-
plex Gaussian MIMO channels. The network is trained at
SNR of 12 dB in 2 bits/codeword/user case and 15 dB in
4 bits/codeword/user case. Benefited by the spatial-domain
diversity gain, all detection algorithms have their performance
improved compared with the 4-by-4 MU-SIMO system. For 2
bits/codeword/user, the gap between JTRD-Net and the POCIS
detector is approximately 2.2 dB at BER of 10−3, and JTRD-
Net largely outperforms pilot-based approaches throughout the
whole SNR range. For 4 bits/codeword/user, the performance
gap between JTRD-Net and POCIS is slightly reduced with
approximately 2 dB at BER of 10−3. The performance degra-
dation is caused by the expansion of the decision region.
Moreover, JTRD-Net fails to achieve the full diversity order
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approach versus other MIMO detection algorithms with different transmission
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Fig. 11. Average BER performance comparison of the proposed JTRD-Net
approach versus other MIMO detection algorithms with different transmission
rates under 4-by-8 Kronecker MIMO channels.

at high SNR due to the channel learning imperfection, i.e.,
channel randomness.

Fig. 9 illustrates the BER performance of the JTRD-Net
approach with different data rates under 8-by-8 i.i.d. complex
Gaussian MIMO channels. This experiment is designed to
investigate the scalability of the JTRD-Net, since the learning
difficulty mainly lies in the user codebook design. Thus, 8
user case is expected to be much more challenging compared
with 4 user case. The network is trained at SNR of 15 dB in 2
bits/codeword/user case and 18 dB in 4 bits/codeword/user
case. With the increasing spatial-domain user load, all of
the detection algorithms have their performance degraded
compared with the previous case. For 2 bits/codeword/user,
the performance improvement from pilot-based scheme to the
JTRD-Net is approximately 2 dB at high SNR, and JTRD-Net
largely outperforms the POCIS detector throughout the whole
SNR range. For 4 bits/codeword/user, similar phenomenons
have been observed. The performance gap between JTRD-Net
and POCIS is approximately 4 dB at high SNR, and JTRD-
Net outperforms pilot-based schemes for at least 3 dB at high
SNR.
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Fig. 12. Average BER performance comparison of the proposed JTRD-Net
approach versus other MIMO detection algorithms with different transmission
rates under 8-by-8 Kronecker MIMO channels.

4) Correlated MIMO Channel: This section aims to in-
vestigate the BER performance of the proposed JTRD-Net
approach with different system configurations under corre-
lated MIMO channels (e.g. Kronecker MIMO channels with
ρ = 0.5). All of the network configurations and baselines
remain unchanged as we utilized under i.i.d. complex Gaussian
MIMO channels.

Fig. 10 illustrates the BER performance of the JTRD-Net
approach with different data rates under 4-by-4 Kronecker
MIMO channels. The network is trained at SNR of 12 dB in
2 bits/codeword/user case and 15 dB in 4 bits/codeword/user
case. In this figure, it is shown that the conventional detection
algorithms have their performance degraded for approximately
5 dB compared with the BER under i.i.d. complex Gaus-
sian MIMO channels. Meanwhile, it is also shown that the
detection accuracy of the proposed JTRD-Net approach is
increased for around 1.3 dB at high SNR. Through our analysis
of the neural-network designed codebooks, we found that
the transmission power is jointly optimized among different
users’ codebooks, which can largely mitigate the inter-user
interference (IUI). This means that the transmit power is not
evenly distributed over T coherent block length, and is indeed
jointly optimized by backpropagation algorithm throughout
the training procedure. For 2 bits/codeword/user, the POCIS
detector achieves nearly the same performance as the MMSE-
CE with MLSD algorithm at low SNR. The performance
gap between the JTRD-Net approach and the pilot-based
schemes is approximately 6.5 dB at BER of 10−2. For 4
bits/codeword/user, this gap is further increased to approxi-
mately 9 dB at high SNR. Again, the POCIS detector achieves
nearly the same performance as the pilot-based solutions.

Fig. 11 illustrates the BER performance of the JTRD-Net
approach with different data rates under 4-by-8 Kronecker
MIMO channels. The network is trained at SNR of 9 dB in
2 bits/codeword/user case and 12 dB in 4 bits/codeword/user
case. For 2 bits/codeword/user, the gap between the JTRD-
Net approach and the MMSE-CE with MLSD algorithm is
around 5.2 dB at BER of 10−3. The POCIS detector achieves
nearly the same performance as the MMSE-CE with MMSE
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Fig. 13. Average BER performance comparison of the proposed JTRD-Net
approach versus other MIMO detection algorithms with different transmission
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algorithm with the performance difference around 1.2 dB.
For 4 bits/codeword/user, it is shown that JTRD-Net fails to
achieve full diversity gain. The gap between JTRD-Net and
the MMSE-CE with MLSD algorithm is approximately 4 dB
at BER of 10−2, and getting close with the SNR increasing.
Meanwhile, JTRD-Net is still able to largely outperform other
baseline schemes.

Fig. 12 illustrates the BER performance of the JTRD-Net
approach with different data rates under 8-by-8 Kronecker
MIMO channels. The network is trained at SNR of 9 dB in
2 bits/codeword/user case and 15 dB in 4 bits/codeword/user
case. For 2 bits/codeword/user, the POCIS detector achieves
nearly the same performance as the MMSE-CE with MLSD
algorithm throughout the whole SNR range. The proposed
JTRD-Net approach still largely outperforms all baseline
schemes with at least 9 dB performance improvement. Similar
phenomenons have been observed for 4 bits/codeword/user
case, the performance improvement from the JTRD-Net ap-
proach to the pilot-based schemes is approximately 4 dB at
high SNR regime.

5) 3GPP MIMO Channel: This section aims to investigate
the BER performance of the proposed JTRD-Net approach
under realistic MIMO channel models, e.g., 3GPP 3D MIMO
channels. To achieve the best performance, we slightly modify
the network architecture by increasing the size of the hidden-
layers to 1500, 1000, and 500. Besides, we consider only the
pilot-based schemes for performance comparison, since the
POCIS detector cannot work in this case.

Fig. 13 illustrates the BER performance of the JTRD-Net
approach with different data rates under 4-by-8 3GPP 3D
MIMO channels. The network is trained at SNR of 21 dB in
2 bits/codeword/user case and 27 dB in 4 bits/codeword/user
case. It is shown that all detection algorithms have their per-
formance largely degraded under realistic channels, since the
practical channels are very ill-conditioned and seriously corre-
lated. For 2 bits/codeword/user, the JTRD-Net approach out-
performs the conventional MMSE-CE with MLSD algorithm
when the SNR is lower than 27 dB. For 4 bits/codeword/user
case, similar phenomenons have been observed and the pro-
posed JTRD-Net approach outperforms the pilot-based solu-
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Fig. 14. Number of training iterations required for various data rates under
different channel models in 4-by-8 MU-SIMO system with 4 layers in DNN
receiver.

tions when SNR is smaller than 28.5 dB.
6) Analysis of Training Complexity: This section aims to

investigate the training complexity of the proposed JTRD-
Net under different channel models. The complexity is evalu-
ated by comparing the required training iterations, which is
obtained by continuously training JTRD-Net until the loss
function converges, i.e., does not change significantly during
a certain number of iterations.

Fig. 14 illustrates the number of training iterations required
for various data rates under different channel models in 4-
by-8 MU-SIMO system with 4 layers in DNN receiver. Here
we fix the network size and number of layers to provide a fair
complexity comparison among different channel models. Note
that the number of training iterations might vary largely for
different training attempts. Thus, the above result is obtained
by averaging 10 independent training attempts. It is shown
that, for the same training set-up, i.i.d. complex Gaussian
channel requires the highest training iterations, which is ap-
proximately 1.4 times than both Kronecker MIMO channel
and 3GPP MIMO channel in 1 bit/codeword/user case. Similar
results have been observed for 2 bit/codeword/user case and
4 bit/codeword/user case. The number of training iterations
for i.i.d. complex Gaussian channel is approximately 1.6 and
1.3 times than Kronecker channel and 3GPP channel for 2
bit/codeword/user case, respectively. For 4 bit/codeword/user
case, the number is approximately 1.4 times higher for both
channel models. The reason that correlated channel model
requires less training iterations is potential because the cor-
relations among channel coefficients benefits the transmitter-
side joint codebook design. Besides, high data rate requires
more training iterations is because the size of the codebook is
correspondingly larger which brings more difficulties in neural
network training procedure.

V. CONCLUSION

In this paper, we have developed a novel end-to-end learning
approach for uplink MU-SIMO joint transmitter and non-
coherent receiver design, namely JTRD-Net. The network
is easy and fast to train because only feed-forward neural
networks are employed. After training, the entire network can
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work efficiently in a non-coherent manner without requiring
any channel knowledge in communication procedure. Besides,
we have developed a novel weight initialization method for
JTRD-Net, which aims to mitigate the training imbalance
among different UTs. Simulation results have demonstrated
that the proposed JTRD-Net approach took significant ad-
vantages in terms of reliability and complexity over hand-
engineered detection schemes. More interestingly, we revealed
that channel correlation can benefit the deep learning-based
joint transmitter and receiver design. Compared with the
i.i.d. complex Gaussian channels, JTRD-Net achieved better
performance and required lower computational complexity
under spatially-correlated channels.
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