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Abstract—Making personal data anonymous is crucial to
ensure the adoption of connected vehicles. One of the privacy-
sensitive information is location, which once revealed can be used
by adversaries to track drivers during their journey. Vehicular
Location Privacy Zones (VLPZs) is a promising approach to
ensure unlinkability. These logical zones can be easily deployed
over roadside infrastructures (RIs) such as gas station or electric
charging stations. However, the placement optimization problem
of VLPZs is NP-hard and thus an efficient allocation of VLPZs to
these RIs is needed to avoid their overload and the degradation
of the QoS provided within theses RIs. This work considers
the optimal placement of the VLPZs and proposes a genetic-
based algorithm in a software defined vehicular network to
ensure minimized trajectory cost of involved vehicles and hence
less consumption of their pseudonyms. The analytical evaluation
shows that the proposed approach is cost-efficient and ensures a
shorter response time.

Index Terms—Vehicular Networks; Security; Location privacy
Zones; Software Defined Networks, Genetic Algorithm.

I. INTRODUCTION

Vehicular networks have obtained considerable interest from

both academia and industry given their positive impact on

traffic efficiency road safety. However, the successful deploy-

ment of vehicular networks strongly depends on providing

secure vehicular communications [1]. Location privacy is

one of the main security requirements since it threatens the

privacy of drivers and passengers. For this reason, location

privacy must early be taken into account in the deployment

of connected vehicles. Pseudonym-changing approach is the

solution adopted by the current security standards to solve

this issue [2] [3]. This approach proposes that vehicles fre-

quently change their temporal identifiers (pseudonyms) to

provide the unlinkablity between their identifiers and their

currently positions, which are included in the safety-related

messages broadcast in clear text. However, several studies

have demonstrated that pseudonyms could be linked [4]. This

limitation is significant and span a range of technical issues for

both acceptance and deployment of connected vehicles. Hence,

several strategies were proposed to ensure the unlinkablity

between the pseudonyms [5]. However, none of the proposed

pseudonym-changing strategies have been adopted by the

standardization bodies until now.

Recently, the Location Privacy Zone (VLPZ) based strategy

has been considered as one of the promising strategies that can

ensure strong protection against pseudonym-linking attacks

and an effective trade-off between location privacy and road

safety [6][7]. Indeed, this strategy is based on virtual zones

(VLPZs) that can easily be deployed in Roadside Infras-

tructures (RIs) such as gas and electrical charging stations.

The location privacy protection offered by VLPZ can thus

be considered as a secondary service provided by these RIs.

Given that the deployment of VLPZs may generate additional

costs to these RIs, VLPZs should intelligently be allocated to

reduce the costs of location privacy service. On the other hand,

the trajectory cost of vehicles to reach the VLPZ should also be

considered. VLPZs should be placed at as near as possible to

vehicles to optimize the service time and prevent losing more

pseudonyms during their trajectory to the deployed VLPZs.

Nowadays, Software Defined Networking (SDN) paradigm

is being considered in the future vehicular networks and

promises to bring programmability and flexibility which are

needed in this kind of dynamic networks. SDN provides a

logically-centralized architecture and decouples the control

plan from the data plane to efficiently manage the network. In

this vein, Huang et al. [8, 9] proposed a new three-plane SDN

architecture to provide efficient pseudonym resources man-

agement. The SDN control plane is responsible for deciding

the rules of how the pseudonyms are distributed. Our solution

is also built on a software-defined networking architecture to

hold the mobility change and exploit the centralized intelli-

gence of the SDN-Controller to efficiently select the VLPZs

placement.

Different from [10], we mainly focus on studying how to

choose the locations of the VLPZ in the vehicular network in

order to minimize the use of pseudonyms during the move

to the allocated VLPZ. To this end, we propose a genetic

algorithm (GA) based VLPZs placement that can scale and

provide good solutions in a fast way. In addition, given the

inherent characteristics of vehicular networks such as high mo-

bility and high density variation, we incorporate our GA based

VLPZs placement in an SDN-enabled architecture to ensure

its flexibility and reprogrammability. The main contributions

of our work are as follows:

• To the best of our knowledge, this is the first study to con-

sider the VLPZ placement problem in an SDN-enabled

vehicular network from the perspective of trajectory cost

and hence the number of used pseudonyms while vehicles

are heading to their assigned VLPZ.

• To find the optimal solution, we formulate the cost-

efficient VLPZ placement problem as an optimization



problem with the objective function that minimizes the

trajectory cost for all involved vehicles.

• Considering the high complexity of the problem in large

as vehicular networks, a VLPZ Placement Genetic Al-

gorithm (VPGA) is introduced to find an effective sub-

optimal solution.

• We conduct numerical analysis to compare our genetic

algorithm based VLPZ placement strategy with our pre-

vious work PRIVANET [10].

The remainder of this paper is organized as follows. The

background and some related work are reviewed in Section

2. The system model and the problem formalization are

presented in Section 3. Section 4 describes the proposed VLPZ

Placement Genetic Algorithm (VPGA). The Numerical results

are presented in Section 5. Finally, the conclusion is given in

Section 6.

II. BACKGROUND AND RELATED WORK

A. VLPZ model

Vehicular Location Privacy Zone (VLPZ) is a logical zone

that aims at protecting the location privacy of vehicular users

[6]. The internal design of VLPZ is seemingly similar to RIs

such as gas stations and vehicle charging stations. Indeed, a

basic VLPZ consists of one entry point called the router, one

exit point called the aggregator and a limited number of lanes

l where l > 1. For this reason, VLPZs can easily be placed

on RIs. In addition, VLPZs can be created as independent

RIs in the future vehicular networks given the urgent need

of protecting the location privacy of road users. Figure 1

illustrates a two-way street where two VLPZs are installed:

(i) V LPZ1: for vehicles coming from West to East, and (2)

V LPZ2: for vehicles coming from East to West.

Fig. 1: Multiple VLPZs model.

Inside the VLPZ, vehicles can change their pseudonyms in

a secure way as follows: vehicles arrive to a VLPZ, one after

another, on a one-lane. When a vehicle reaches the router, it

stops broadcasting safety messages and heads for an assigned

VLPZ’s lane. The assigned lane is randomly and privately

selected by the router. The vehicle can then reside inside a

VLPZ for a random period of time depending on the service

time. A vehicle must change its pseudonym before leaving the

VLPZ and all vehicles exit a VLPZ through the aggregator.

As discussed in [6], this strategy provides the protection not

only against both of the syntactic and the semantic linking

of pseudonyms but also against the FIFO attacks. In addition,

differently, from the strategies that rely on the radio silence

technique, road safety is preserved in this strategy. The reader

can refer to [6] [7] and [10] for further information.

B. Related work

Many Pseudonym-Changing Strategies (PCSs) have been

proposed to protect location privacy in vehicular networks

from linking attacks. These strategies can be classified into

three categories [5]: (i) Synchronized pseudonym-changing

process based strategies [11–15]. These strategies are weak

since the contents of safety messages can be used to link the

pseudonyms; (ii) Encrypted safety messages based strategies

[16–18]. These strategies can also be broken since internal

passive adversaries can decrypt safety messages and provide

a clue to the external global passive adversary to link the

pseudonyms, and finally, (iii) Radio silence based strategies

[19][20, 21][22, 23], which are more effective than the previ-

ous ones since they provide protection against both external

and internal passive adversaries. However, the use of radio

silence is challenging in vehicular networks due to its impact

on road safety [24]. The authors of [6] proposed VLPZ-based

PCS, which uses also the radio silence. This strategy provides

strong protection against the pseudonym linking attacks and

preserves also road safety. The authors of [7, 10] proposed

PRIVANET, which is a framework which uses VLPZs. In

this framework, VLPZs are thus equipped with RSUV LPZs

to notify their presence and to distribute the pseudonyms sets.

Additionally, PRIVANET proposed a reputation-based mech-

anism to motive selfish vehicles to enter VLPZs. It is worth

to mention that the optimal placement problem of VLPZs was

preliminary formulated. However, only a simple illustration

solution was provided. The study of [25] suggested providing

43,800 pseudonyms per year for a vehicle to avoid linking

attacks. This number mainly depends on the pseudonyms

changing frequency. A huge number of pseudonyms should

thus be stored in each vehicle, which can exceed vehicle

storage capabilities. [26] pointed out that pseudonyms are

scarce resources and costly acquired and managed and hence

should be efficiently used.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the proposed software defined

vehicular network architecture and give the formalization of

the optimal placement of VLPZs problem.

A. Vehicular system model

We consider a software-defined vehicular network archi-

tecture. As illustrated in Figure 2, this architecture has one

level of SDN control consisting of the global SDN controller

that has full knowledge about the vehicular network. The

data forwarding plane consists of vehicles and Road Side

Units (RSUs). Each vehicle is equipped with 802.11p interface

to communicate with other vehicles and with RSUs. Each

RSU is also equipped with two interfaces. A wired link to

communicate with the neighboring RSUs and an LTE interface

to communicate with the global SDN controller. An SDN



agent is also run on each vehicle and RSU. The communication

links between the global SDN controller and the data plane are

secured. We also consider that road area contains a set of RIs

managed by trusted authorities. RIs periodically send updates

including their current capacity to the global SDN controller.

The internal architecture of the global SDN controller mainly

consists of three modules:

1) Roadside Infrastructure Module (RIM): it collects

information and updates about the RIs.

2) Mobility and Topology Module (MTM): it collects the

mobility information of vehicles.

3) VLPZ Placement Genetic Algorithm (VPGA): it se-

lects periodically the best RIs to host the VLPZs based

on the information provided by RIM and MTM. When

a vehicle decides to enter a VLPZ, it sends a request to

the global SDN controller. This latter uses the solution

provided by the VPGA to assign each vehicle to the

adequate VLPZ.

Each vehicle periodically broadcasts a safety message every

t millisecond, where each message includes a location, a time,

a velocity and a content. Before joining the vehicular network,

each vehicle registers with the CA (certification authority).

During registration, each vehicle Vi is pre-loaded with a set of

m pseudonyms Ki,k where k ∈ {1,..., m }, that are, public keys

certified by the CA. For each pseudonym Ki,k of a vehicle Vi,

the CA provides a certificate Certi,k(Ki,k). The safety mes-

sages are properly signed by private key K−1

i,k corresponding to

the pseudonym Ki,k to ensure the authentication. A certificate

is attached to each message to enable other vehicles to verify

the sender’s authenticity.

Fig. 2: Software defined vehicular network architecture

B. Problem formalization

Here we answer the following question: Given m RIs that

exist in a road area, with m>= Nmax, what are the best RIs

that should deploy VLPZs in order to reduce the trajectory

cost of vehicles ?

To answer to this question, we formulate the problem as

follows: Let i= { 1,...,n} the set of existing vehicles at time

t. Let j={1,...,m} be the set of the candidate RIs to deploy

the required VLPZs. Let cij the trajectory cost of a vehicle

vi to move to a RIj . Let yj a binary decision variable, which

indicates that the RI is selected to host a VLPZ at time t.

xij is a binary variable, which indicates that the vehicle vi is

assigned to RIj or not.

To select the best RIs that host the required number VLPZs,

we should minimize the following objective function F, which

aims to minimize the trajectory cost of vehicles when moving

to the assigned VLPZ [10].

F = min
∑n

i=1

∑m

j=1
cijxij ... (1)

The transportation cost cij can be expressed as the time

spent by a vehicle vi to reach a candidate RIj and quantified

by the loss of pseudonyms during this time, which can be

calculated using the following formula:

cij =
dij

v
∗ η ... (2)

• dij : the distance between a vehicle i and a candidate RIj
• v: the average speed of vehicles (meter/second).

• η: the frequency of changing of pseudonym

(pseudo/second).

We assume that v and η are fixed values. Thus, the objective

function F can be rewritten as function of dij as follows:

F = min
∑n

i=1

∑m

j=1
dijxij ... (3)

The feasibility of the solution depends on different con-

straints, which are represented by the following equations:























































∑m

j=1
xij = 1 ... (4)

∑m

j=1
yj = Nvlpz(t) ... (5)

∑n

j=1
xij <= Kopt ... (6)

xij ∈ {0, 1} ... (7)

yj ∈ {0, 1} ... (8)

(4) ensures that each vehicle vi is only assigned to one RI;

(5) ensures that the number of selected RIs is equal to the

number of VLPZ that are needed at time t (Nvlpz(t)). (6)

guarantees that the number of vehicles that are assigned to

each infrastructure does not exceed the capacity of the RI

(Kopt); and finally, (7) and (8) are the integrity constraints.



TABLE I: The description of variables

Variable Description

cij the trajectory cost of a vehicle vi to move to RIj
yj A binary decision variable which indicates that RI is selected

to deploy a VLPZ at time t
xij A binary variable, which indicates that vi is assigned to RIj .
Nmax the maximum number of required VLPZs at the road area.
Nvlpz(t) the number of required VLPZs at a given time t.
Kopt the number of vehicles that can be hosted by the RI
dij the distance between a vi and RIj
v the average speed of vehicles (m/s)
η the frequency of changing of pseudonym (pseudo/s)

R Information table of RIs
V Information table of vehicles
A Assignment table

IV. VPGA: A GENETIC ALGORITHM FOR AN OPTIMAL

PLACEMENT OF VLPZS

As shown in [27], finding an optimal solution for the

VLPZs placement is a NP-hard problem. Hence, we explore

approximation techniques, and model the problem as finding

the best fitted solution according to a genetic algorithmic

model of the problem, after a fixed amount of generations have

been explored. In this vein, we propose a VLPZ Placement

Genetic Algorithm (VPGA) for an optimized placement of

VLPZs within RIs. The pseudo-code of VPGA is illustrated

in Algorithm 1. VPGA takes as input the current mobility

information of vehicles and the positions of RIs and returns

the VLPZs placement decision. In the following, the phases

of VPGA are detailed.

A. Chromosome representation

In VPGA, each candidate solution is presented as a chro-

mosome that is a chain of integers where each value is the

index number of a potential RI. The length of the chromo-

some is equal to the optimal number of required VLPZs. As

illustrated in Figure 3, the coordinates (x,y) and the capacities

of the potential RIs are stored in R, which is a 2D Array

(3 ∗m). The vehicle coordinates are also stored in V, which

is 2D Array(2*n). V is updated periodically according to the

mobility of vehicles.

B. Initialisation Phase

In this phase, the initial population of chromosomes is

generated and vehicles are also assigned to each generated

chromosome in order to compute the fittest chromosome.

To cover the whole search space, the initial population is

randomly generated. In addition, the size of the generated

population is maintained in each iteration, which equals to the

size of the initial population. However, a simple generation

of the population could generate invalid chromosomes, which

do not satisfy the constraint (4). For this reason, as described

is Subroutine 1, for each generated gene, VPGA checks if

it has already been added to the given chromosome or no.

The random population procedure runs until the generation

Fig. 3: Chromosome representation

of all chromosomes. The assignment and the fitness calcula-

tion procedures are described in subsections IV-F and IV-G

respectively.

C. Selection Phase

Selection is the first procedure to build a new population.

A set of chromosomes from the old population should be

selected to be parents for the rest of the procedures (crossover

and mutation). VPGA uses two selection methods: elitism

and tournament. Elitism selects the best fittest chromosomes

from the old population and adds them to the new population.

As described in Subroutine 2, VPGA only selects the best

fittest chromosome and copy it to the new created population.

VPGA also uses the tournament method to select the parents

that are used by the crossover to generate new chromosomes.

The tournament selection method randomly chooses a set of

chromosomes from the old population. The size of this set

should be equal to the tournament size. After that, the fitness

of each tournament chromosome is evaluated and the fittest

chromosome is selected as a parent for the crossover.

D. Crossover Phase

The crossover is a convergence operation that are used to

generate new offsprings for the new population. It is intended

to pull the population towards a local min or max. Crossover

selects genes from the selected parents to create the new

chromosome. As described in Subroutine 3, the crossover

runs until the generation of the new population. In each

iteration, a new chromosome is created based on the two

parent chromosomes which were selected using the tourna-

ment selection method. The genes of the new chromosome

are selected using the uniform crossover i.e. the genes are

randomly copied from the first or the second parent. The

crossover computes the probability that determines from which

parents the gene comes. Then the new chromosome is added

to the new population.



E. Mutation Phase

Contrarily to crossover, the mutation is a divergence op-

eration which is intended to occasionally break one or more

members of a population out of a local min/max space and

potentially discover a better space. The mutation operator

works on a single chromosome. It aims to randomly introduce

a new gene instead of inheriting from the old chromosomes.

The purpose is to avoid the local optimal covering the whole

search space. As described in subroutine 4, the mutation runs

until the generation of the new population. In each iteration,

the genes of each chromosome are changed according to the

mutation probability. This latter is used to determine whether

the gene should be changed or not. In case a change is needed,

a gene is randomly generated from the whole search space.

F. Assignment Phase

The next procedure after the generation or the update of

the population is the assignment of vehicles to genes (RIs)

of each chromosome in order to be able to evaluate the

fitness. VPGA uses two algorithms of assignment: (i) The

classical assignment: that calculates the Euclidean distance

between each vehicle vi and each candidate RI, and (ii) The

clustering-based assignment: that uses the K-means same

size algorithm to create clusters of vehicles that have a same

size, which equals to the capacity of the RI. The clustering-

based assignment calculates the Euclidean distance between

the cluster centroids and each candidate RI.

1) Classical assignment: consists of three steps: (i) Com-

pute the Euclidean distances between each vehicle vi and each

candidate RI. These distances are saved in the distance table

(D); (ii) Sort D from the lowest to the highest distance value;

and (iii) Assign each vehicle to the nearest RI and save this

assignment in A.

2) Clustering-based assignment: consists of four steps: (i)

Create same-size clusters of vehicles. VPGA uses a variation

of k-means clustering algorithm, proposed by ELKI Frame-

work to create these clusters [28]; (ii) Calculate the distances

between each centroid of a cluster and each candidate RI and

save them in (D); (iii) Sort D from the lowest distance value

to the highest one; and (iv) Assign each centroid to the nearest

RI and save these assignments on A.

G. Fitness evaluation

Each generation of the genetic programming approach goes

through mutations and crossovers. The newly generated solu-

tions are evaluated according to a fitness function. We derive

the fitness function according to the objective functions defined

in the ILP formulation, namely equation (1). The variables in

the paper are described in Table I.

H. Stop conditions

A genetic algorithm requires certain stop conditions to

terminate. In VPGA, we consider two stop conditions related

to two different aspects. The first condition is related to

the convergence of our solution: if the fitness value keeps

unchanged during three iterations, we assume that the optimal

value of the fitness is reached and the algorithm should be

terminated. The second condition is linked to the number of

iterations. We have simply limited the maximum number of

iterations. VPGA returns the fittest chromosome .i.e. chromo-

some with the minimal fitness value.

Algorithm 1: VLPZ Placement Genetic Algorithm

Data: Mobility information of Vehicles and RIs
Result: VLPZs placement decision

22 Initialize
3 Build local variables: V, R, etc. ;
4 Generate initial population;
5 Assignment;
6 Fitness evaluation;
88 Main process
9 while termination conditions not satisfied do

10 New population (Selection, Crossover, Mutation);
11 Assignment;
12 Fitness evaluation;
13 end
14 return the fittest chromosome
1616 Subroutine 1 — Random Population Generation

Data: Local variables
Result: Population (P)

17 while i < population_size do
18 while j < chromosome_size do
19 P[i,j] ← Randomly generate a new gene ;
20 end
21 end
2323 Subroutine 2 — Selection

Data: Population
Result: Updated population

24 Fittest Chromosome ← P[0];
25 for i= 1 ... population size do
26 if fitness (P[i]) > fitness (Fittest Chromosome) then
27 Fittest Chromosome ← P[i];
28 end
29 end
30 P[0] ← Fittest Chromosome;
3232 Subroutine 3 — Crossover

Data: Population
Result: Updated population

33 for i= 1 ... (population_size-1) do
34 do
35 Chromosome1 ← TournamentSelection();
36 Chromosome2 ← TournamentSelection();
37 for (j= 0... (chromosome_size-1)) do
38 if random()<= crossover_probability then
39 New_chromosome[j] ← Chromosome1[j] ;
40 else
41 New_chromosome[j] ← Chromosome2[j] ;
42 end
43 end
44 while !checking(New_chromosome);
45 P[i] ← New_chromosome ;
46 end
4848 Subroutine 4 — Mutation

Data: Population
Result: Updated population

49 for i= 1 ... (population_size-1) do
50 for j= 0... (chromosome_size-1) do
51 if random() <= mutation probability then
52 P[i,j] ← generate new gene;
53 end
54 end
55 end



V. NUMERICAL RESULTS

In this section, we evaluate the performance of VPGA

considering the classical and clustering-based assignment.

VPGA is one of the main functions of the vehicular SDN

controller: optimal VLPZs placement. To show the merit of

our approach, we compare it to the solution already proposed

in PRIVANET [10]. VPGA is programming and implemented

using Java programming language and run on Intel i5 2.6 GHz.

Table II shows the parameters used by VPGA. We have con-

sidered three levels of Vehicular Density (VD): Low (LVD),

Medium (MVD), and High (HVD) for 100, 150, and 200

vehicles/km2 respectively. We varied also the number of RI

from 15 to 35. The capacity of each RI is fixed to 15. We set

the size of the generated population in each iteration to 50.

The size of the chromosome of is calculated according to the

following formula:

Chromosome_size =

[

Number_V ehicles

Capacity_RI

]

The performance of VPGA depends on the crossover and the

mutation operators. For this reason, we fixed the tournament

size and the elitism parameters to 5 and 1 respectively and

varied the crossover probability and the mutation probability

from 5% to 95% respectively. Each test is repeated 10 times

and the results are calculated with 95% of the confidence

interval.

TABLE II: Simulation Parameters

Parameter Value

Number of tests 10,100
Population size 50
Crossover probability [0.05-0.95]
Mutation probability [0.05-0.95]
Tournament size 5
Elitism set size 1
Number of vehicles 100, 150, and 200
Number of RIs 15,20, 25, 30, and 35
Capacity of RI 15

A. Fitness Comparison

Figure 4 compares the obtained fitness values using VPGA

with its variations (classical and clustering-based assign-

ments), and PRIVANET [10]. In this evaluation, the position

of vehicles and RIs are generated before the beginning of each

iteration. We have considered the case of MVD and varied the

number of RI from the lowest (15) to the highest value (35). As

we can see, the best value of fitness is obtained when using

VPGA with the classical assignment. The fitness decreases

gradually when the number of RIs increases. This is due to

the fact that with a large number of RIs, a high number of RIs

will be in the vicinity of vehicles, hence the distances between

vehicles and RIs are minimized.
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Fig. 4: Fitness comparison under different approaches.

B. Impact of vehicular density

We evaluate in Figure 7, the fitness and the convergence

speed obtained under different vehicles density (LVD, MVD,

and HVD). As we can see in Figure 7a the fitness decreases

with the increase in the number of RIs for all VDs. For LVD

and MVD, the fitness values approximately keep stable values

between 25 and 35 RIs. However, for high densities, the value

of fitness is enhanced in this interval. The reason for that with

a high density of vehicles and with a large number of RIs

the distances between the vehicles and RIs will be short. As

a result, the fitness value decreased. Figure 7b illustrates the

speed convergence under different vehicle densities. We notice

that the number of iterations increases with the number of RIs

for all vehicle densities. Additionally, the convergence speeds

of vehicle densities are close when the number of RIs is equal

to 35. These results can be explained that with a large number

of RIs, the search space of VPGA will be larger. Consequently,

VPGA takes more iterations to reach the fittest chromosome

whatever the vehicle densities are.

C. Parameters tuning

We evaluate in Figure 5 and 6 the impact of the crossover

probability and the mutation probability on the obtained fitness

and convergence speed values respectively under different

VDs. The blue zones in the contour plots are the minimum

values of fitness and convergence speed respectively. We can

see in Figure 5 that the density of the blue color is higher

when the mutation probability between 5% and 20% and

the crossover probability between 50% and 90%. Figure 5

shows that the density of the blue color is higher when the

mutation probability is greater than 20%. To this end, the

mutation and the crossover probabilities should carefully be

tuned to establish the equilibrium between the fitness and

convergence speed. In VPGA, the best results are obtained

when the mutation probability equals 20% and the crossover

probability ∈ [50, 90]%.
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Fig. 5: Fitness evaluation with different crossover and mutation probabilities under different VDs.
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Fig. 6: Convergence speed evaluation with different crossover and mutation probabilities under different VDs.
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Fig. 7: Fitness and convergence speed comparison under different VDs.

D. Response time of the SDN controller

To run adequately, VPGA needs an accurate input such as

number of RIs, densities of the traffic, coordinates of vehicles,

etc. This input is provided by the SDN controller which

supervises the behavior of the moving vehicles via transmitted

beacons and get information about the RIs from authorities. In

our SDN-enabled architecture, centralized control operations

require less signaling traffic and shorter delays. When a

change occurs in the network, the SDN knowledge is updated.

Going further, we have compared the performances of our

SDN-enabled architecture in terms of response time of SDN

controller under different vehicles densities. The response time

is the time taken by the SDN controller to select the placement

of the VLPZs. Recall that VLPZs placement are periodically

calculated with SDN-controller As shown in Figure 8, the

response time increases with vehicular density. The maximal

value is 7 seconds which is observed under HVD.
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Fig. 8: Response time of the SDN controller under different

VDs.

VI. CONCLUSION

In this paper, we proposed a cost-efficient vehicular location

privacy zones placement strategy that relies on the emerging

concept of SDN in vehicular networks and a meta-heuristic

based on a genetic algorithm to provide an optimal and

a dynamic placement solution. To this end, we provided a

modeling and mathematical formulation of the problem that

served as a basis to derive constraints and criteria for the

the proposed genetic algorithm. Comparative analytical results

with previous studies illustrate that our strategy has better

performances especially in the reducing the number of used

pseudonyms and the response time.
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