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Abstract—To satisfy diverse services from mobile users (MUs)
over a common network infrastructure, network slicing is
envisioned as a promising technology. This paper considers
radio access network (RAN)-only slicing, where the physical
RAN is judiciously tailored to accommodate computation and
communication functionalities. Multiple service providers (SPs,
a.k.a., tenants) compete for a limited number of channels across
the discrete scheduling slots in order to serve their respective
subscribed MUs. From a MU perspective, the age of information
of data packets from traditional mobile services and the energy
consumption at mobile device are of practical importance. We
characterize the interactions among the SPs via a stochastic game,
in which a SP selfishly maximizes its own expected long-term
payoff. To approximate the Nash equilibrium solutions, we build
an abstract stochastic game exploring the local information of
SPs. Furthermore, the decision-making process at a SP can be
much simplified by linearly decomposing the per-SP Markov
decision process, for which we derive a deep reinforcement
learning based scheme to find the optimal abstract control
policies. TensorFlow-based experiments validate our studies and
show that the proposed scheme outperforms the three baselines
and yields the best performance in average utility.

I. INTRODUCTION

To support the ever increasing wireless services, new cell

sites are being constantly built, which leads to dense network

deployments [1]. In a dense radio access network (RAN), it

is expensive to manage the control plane operations. On the

other hand, the computation-intensive applications, such as

the augmented reality and the interactive online gaming, are

gaining popularity [2]. The mobile user (MU)-end terminal

devices are in general constrained by the battery capacity and

the processing speed of central processing unit (CPU). Hence

the tension between computation-intensive applications and

resource-constrained mobile devices calls for a revolution in

existing computing infrastructures [3]. Mobile-edge computing

(MEC) is emerging as a key technology that brings the

computing capabilities within the RANs in close proximity

to MUs [2]. Offloading a computation task to the MEC

server for execution involves wireless data transmissions. How

to orchestrate radio resources between MEC and traditional

mobile services adds another dimension of complexity to the

network management [4]. By abstracting all physical base

stations (BSs) in a geographical area as a logical big BS, the

software-defined networking (SDN) concept provides not only

infrastructure flexibility but also service-oriented customiza-

tion [5]. In a software-defined RAN, the SDN-orchestrator is

responsible for handling all control plane operations.

One key benefit from implementing a software-defined

RAN is to facilitate network sharing [6]. As such, a physical

RAN is able to host multiple service providers (SPs, a.k.a.,

tenants), which breaks the traditional single ownership of

a network infrastructure [7]. For example, an over-the-top

application provider (such as Google [8]) can become a SP so

as to lease radio resources from the infrastructure provider to

improve the Quality-of-Service and the Quality-of-Experience

for its subscribers. Building upon the 3rd Generation Partner-

ship Project Technical Specification Group network sharing

paradigm [9], a software-defined RAN and its integration with

network function virtualization enable RAN-only slicing that

splits the RAN into multiple virtual slices [10]. This paper

concentrates on a software-defined RAN where the RAN slices

are judiciously tailored to accommodate both computation and

communication functionalities [11].

The technical challenges arise from the implementation of

RAN-only slicing. Particularly, the mechanisms that efficiently

exploit the decoupling of control and data planes in a software-

defined RAN must be designed to optimize radio resource

utilization. In the considered software-defined RAN, a limited

number of channels are auctioned over the discrete time

horizon to the SPs, the subscribers of which request MEC and

traditional mobile services. The SPs compete to orchestrate

the channels for their subscribed MUs in accordance with the

network dynamics with the aim of maximizing the expected

long-term payoff performance. After collecting the auction

bids from all SPs, the SDN-orchestrator allocates channels

to the MUs via a Vickrey-Clarke-Groves (VCG) mechanism1

[12]. For a MU, the “freshness” of data packets from tradi-

tional mobile services and the energy consumed by mobile

device are of equivalent importance. A relevant metric for

quantifying the “freshness” is the notion of age of information

(AoI) [13]. To the best of our knowledge, there does not

exist a comprehensive study on stochastic AoI-aware resource

orchestration in multi-tenancy RAN-only slicing.

II. SYSTEM DESCRIPTIONS AND ASSUMPTIONS

In this paper, we consider a system with RAN-only slicing.

The infinite time horizon is discretized into scheduling slots,

each of which is indexed by an integer k ∈ N+ and is assumed

to be of equal duration δ (in seconds). The physical RAN is

1One main advantage of the VCG mechanism is to ensure truthfulness,
efficiency and incentive compatibility.



composed of a set B of BSs covering a service area, which is

represented by a set L of small locations. A small location can

be characterized by the uniform signal propagation conditions

[14]. Let Lb denote the serving area of a BS b ∈ B. We assume

for any two BSs b and b′ ∈ B (b′ �= b) that Lb ∩ Lb′ = ∅.

The geographical distribution of BSs can be denoted by a

topological graph T G = 〈B, E〉, where E = {eb,b′ : b �=
b′, b, b′ ∈ B} with eb,b′ = 1 if BS b and BS b′ are neighbours

and otherwise eb,b′ = 0. In the network, a set I = {1, · · · , I}
of SPs provide both MEC and traditional mobile services to

MUs. We assume that a MU can subscribe to only one SP.

Let Ni be the set of MUs of a SP i ∈ I .

Over the scheduling slots, the MUs dynamically move

within L following a Markov mobility model [15]. We let

N k
b,i be the set of MUs of SP i ∈ I appearing in the coverage

of a BS b ∈ B during a slot k. A MU at a location can only be

associated with the BS that covers the location. All MUs share

a set J = {1, · · · , J} of channels with the same bandwidth

η (in Hz). The SPs compete for the limited channel access

opportunities in order to serve their MUs. At the beginning of

each slot k, each SP i submits an auction bid βk
i = (ν

k
i ,C

k
i ),

where νk
i is the valuation of Ck

i = (C
k
b,i : b ∈ B) with Ck

b,i

being the number of requested channels in the service area

of a BS b. After receiving βk = (βk
i : i ∈ I), the SDN-

orchestrator performs the centralized channel allocation and

calculates the payment τk
i for SP i. Let ρk

n = (ρ
k
n,j : j ∈ J )

be the channel allocation of a MU n ∈ N = ∪i∈INi, where

ρkn,j = 1 if channel j is allocated to MU n ∈ N during slot k
and ρkn,j = 0, otherwise. The following constraints are taken

into account for the channel allocation at the SDN-orchestrator

during a scheduling slot,(∑
i∈I

∑
n∈Nk

b,i

ρkn,j

)
·
(∑

i∈I

∑
n∈Nk

b′,i

ρkn,j

)
= 0,

if eb,b′ = 1, ∀eb,b′ ∈ E , ∀j ∈ J ; (1)∑
i∈I

∑
n∈Nk

b,i

ρkn,j ≤ 1, ∀b ∈ B, ∀j ∈ J ; (2)

∑
j∈J

ρkn,j ≤ 1, ∀b ∈ B, ∀i ∈ I, ∀n ∈ Nb,i, (3)

which ensure that: 1) one channel cannot be allocated to MUs

associated with two adjacent BSs in order to avoid interference

during data transmissions; and 2) in the service area of a BS,

one MU can be assigned at most one channel and one channel

can be assigned to at most one MU. The winner vector from

the channel auction at slot k is denoted by φk = (φk
i : i ∈ I),

where φk
i = 1 if SP i wins and φk

i = 0 indicates that no

channel will be allocated to the MUs of SP i during the slot.

The SDN-orchestrator determines φk according to the VCG

mechanism, that is,

φk = argmax
φ

∑
i∈I

φi · νk
i (4a)

s. t.
∑

n∈Nk
b,i

ϕk
n = φi · Ck

b,i, ∀b ∈ B, ∀i ∈ I; (4b)

constraints (1), (2) and (3), (4c)

where ϕk
n =

∑
j∈J ρkn,j and φ = (φi ∈ {0, 1} : i ∈ I).

Then the payment τk
i for each SP i can be calculated as τk

i =
maxφ−i

∑
i′∈I\{i} φi′ · νk

i′ −maxφ
∑

i′∈I\{i} φi′ · νk
i′ , where

−i = I \ {i}.

Denote by Lk
n ∈ L the geographical position of a MU

n ∈ N during a scheduling slot k. As in [14], we assume

that the average channel gain Hk
n = h(Lk

n) of the link

between MU n and the associated BS is only determined

by the physical distance. At the beginning of each schedul-

ing slot k, MU n independently and randomly generates a

number Ak
n,(t) ∈ A = {0, 1, · · · , A(max)(t) } of computation

tasks2 according to an unknown Markov process [16]. We use

(μ(t), ϑ) to represent a single computation task, where μ(t)
and ϑ are the input data size (in bits) and the number of CPU

cycles required to accomplish one input bit of the computation

task, respectively. A computation task can be 1) processed

locally at the MU or 2) offloaded to the MEC server for

execution. The computation offloading decision for MU n at a

slot k determines the number Rk
n,(t) (≤ Ak

n,(t)) of tasks to be

offloaded to the MEC server. The remaining Ak
n,(t)−ϕk

n·Rk
n,(t)

tasks are to be processed locally. Meanwhile, a data queue is

equipped at a MU to buffer the packets from the traditional

mobile service. For each MU n, let W k
n,(p) be the queue length

at the beginning of a scheduling slot k and An,(p) be the

fixed number of new packets arriving evenly during the slot.

The arriving time instant of each packet arrival belongs to

{δ · (k − 1 + a/An,(p)) : a ∈ {1, · · · , An,(p)}}. Let Rk
n,(p)

be the number of packets that are scheduled for transmission

from MU n at slot k. The queue evolution of MU n can be

written as the form below,

W k+1
n = max

{
W k

n − ϕk
n ·Rk

n,(p), 0
}
+An,(p), (5)

where a large enough queue size is assumed at the MUs to

avoid the possibility of packet drops. For traditional mobile

service, it is critical to maintain the “freshness” of data

packets. The data “freshness” of a MU n at the beginning

of scheduling slot k (or equivalently, at the end of scheduling

slot k − 1) can be quantified by the AoI T k
n [13],

T k
n = (k − 1) · δ − λk

n, (6)

with λk
n being the arriving time instant of the oldest packet

from the data queue at the beginning of slot k. The AoI of

the data queue evolves as

T k+1
n = T k

n + δ − δ

An,(p)
· ϕk

n ·Rk
n,(p). (7)

The energy (in Joules) consumed by a MU n ∈ N for

the reliable transmissions of ϕk
n ·Rk

n,(t) computation tasks and

ϕk
n ·Rk

n,(p) packets during a scheduling slot k can be calculated

to be

P k
n,(tr) =

δ · η · σ2
Hk

n

·
(
2
ϕkn·(μ(t)·Rkn,(t)+μ(p)·Rkn,(p))

η·δ − 1
)

, (8)

2For the purpose of making theoretical analysis tractable, we assume
that the maximum CPU power at a mobile device matches the maximum

computation task arrivals and a MU can process A
(max)
(t)

tasks within the

duration of one scheduling slot.



where σ2 is the noise power spectral density and μ(p) is the

size of data packets. Let Ω(max) be the maximum transmit

power for all MUs, namely, P k
n,(tr) ≤ Ω(max) · δ, ∀n and ∀k.

For the rest number Ak
n,(t) −ϕk

n ·Rk
n,(t) of computation tasks

that are processed at the mobile device of MU n, the CPU

energy consumption is given by

P k
n,(CPU) = ς · μ(t) · ϑ · 
2 ·

(
Ak

n,(t) − ϕk
n ·Rk

n,(t)

)
, (9)

where ς is the effective switched capacitance [17] and 
 is the

CPU-cycle frequency of the mobile devices.

III. STOCHASTIC GAME FORMULATION

At a scheduling slot k, the local state of a MU n ∈ N can be

given as χk
n = (L

k
n, A

k
n,(t),W

k
n , T

k
n ) ∈ X = L× A×W ×T ,

where W and T denote the sets of queue and AoI states.

χk = (χk
n : n ∈ N ) ∈ X |N | then characterizes the global

network state the with |N | meaning the cardinality of the set

N . For a SP i ∈ I, we define πi = (πi,(c),πi,(t),πi,(p)) as

a control policy, where πi,(c), πi,(t) = (πn,(t) : n ∈ Ni)
and πi,(p) = (πn,(p) : n ∈ Ni) are the channel auction,

the computation offloading and the packet scheduling policies.

Note that with the channel allocation results, the computation

offloading policy πn,(t) as well as the packet scheduling policy

πn,(p) are MU-specified, hence both πi,(t) and πi,(p) of SP

i depend only on χk
i = (χk

n : n ∈ Ni) ∈ Xi = X |Ni|.
The joint control policy of all SPs in the network is given

by π = (πi : i ∈ I). With the observation of global

network state χk at the beginning of each scheduling slot k,

SP i announces the auction bid βk
i to the SDN-orchestrator

and decides the Rk
i,(t) computation tasks as well as Rk

i,(p)

data packets to be transmitted following the control policy

πi. Namely, πi(χ
k) = (πi,(c)(χ

k),πi,(t)(χ
k
i ),πi,(p)(χ

k
i )) =

(βk
i ,R

k
i,(t),R

k
i,(p)), where Rk

i,(t) = (Rk
n,(t) : n ∈ Ni) and

Rk
i,(p) = (Rk

n,(p) : n ∈ Ni). Accordingly, SP i achieves an

instantaneous payoff at slot k, which is

Fi

(
χk,ϕk

i ,R
k
i,(t),R

k
i,(p)

)
=
∑
n∈Ni

αn · Un

(
χk

n, ϕ
k
n, R

k
n,(t), R

k
n,(p)

)
− τk

i , (10)

with ϕk
i = (ϕ

k
n : n ∈ Ni) and αn ∈ R+ being the unit price

to charge a MU n for realizing utility

Un

(
χk

n, ϕ
k
n, R

k
n,(t), R

k
n,(p)

)
=

U (1)n

(
T k
n

)
+ �n ·

(
U (2)n

(
P k
n,(CPU)

)
+ U (3)n

(
P k
n,(tr)

))
. (11)

U
(1)
n (·), U (2)n (·) and U

(3)
n (·) in (11) are assumed to be the posi-

tive and monotonically decreasing functions, while �n ∈ R+ is

a weighting factor. It can be easily found that the randomness

lying in a sequence {χk : k ∈ N+} of global network states

is Markovian.

Taking expectation with respect to the per-slot instantaneous

payoffs across the scheduling slots, the expected long-term

payoff of a SP i ∈ I for a given initial global network state

χ1 = χ � (χn = (Ln,(u), L(e), An,(t),Wn) : n ∈ N ) can be

expressed as in (12) on the top of Page 4, where γ ∈ [0, 1) is

a discount factor. We also define Vi(χ,π) as the state-value

function of SP i. Each SP i aims to solve a best-response

control policy π∗
i such that π∗

i = argmaxπi Vi(χ,πi,π−i),
∀χ ∈ X |N |. Consider the limited number of channels and the

stochastic nature in networking environment, the interactions

among the non-cooperative SPs over the scheduling slots are

formulated as a stochastic game, SG. In the game, the players

are I SPs and there are a set X |N | of global network states

as well as a collection of control policies {πi : ∀i ∈ I}.

A Nash equilibrium (NE), namely, a tuple of best-response

control policies 〈π∗
i : i ∈ I〉, describes the rational behaviours

of the non-cooperative SPs in the SG. For the I-player SG
with an expected infinite-horizon discounted payoff criterion,

there always exists a NE in stationary control policies [18]. For

simplicity, we define Vi(χ) = Vi(χ,π
∗
i ,π

∗
−i) as the optimal

state-value function, ∀i ∈ I and ∀χ ∈ X |N |.

IV. STOCHASTIC GAME ABSTRACTION AND A DEEP

REINFORCEMENT LEARNING SCHEME

It can be observed from (12) that the expected long-term

payoff of a SP i ∈ I depends on the information of not only

the global network states across the scheduling slots but also

the joint control policy π of all SPs in the network. That is, the

decision makings among the non-cooperative SPs are coupled

in the SG, which makes it a daunting task to find the NE. In

the following, we will elaborate on how the SPs play the SG
only with limited local information.

A. Abstract Stochastic Game Reformulation
To alleviate the coupling of decision makings among the

SPs, we abstract SG as AG [19], in which a SP i ∈ I behaves

based on its own local network dynamics and abstractions of

states at other SPs. Let Si = {1, · · · , Si} be an abstraction

of X−i, where Si ∈ N+ and Si � |X−i|. We observe

that the couplings in SG exist in the channel auction and

the payments of SP i depend on X−i. This allows SP i to

construct Si by classifying the value region [0,Γi] into Si

disjoint intervals, i.e., [0,Γi,1], (Γi,1,Γi,2], (Γi,2,Γi,3], . . .,
(Γi,Si−1,Γi,Si ], where Γi,Si = Γi is the maximum payment

and we let Γi,1 = 0 for the case in which SP i wins the

channel auction with no payment [20]. With this regard, SP i
abstracts (χi,χ−i) ∈ X |N | as χ̃i = (χi, si) ∈ X̃i = Xi × Si

if the payment in previous slot belongs to (Γi,si−1,Γi,si ].
Let π̃i = (π̃i,(c),πi,(t),πi,(p)) be the abstract control policy

played by SP i in AG, where π̃i,(c) denotes the abstract channel

auction policy. Likewise, the abstract state-value function of

SP i under π̃ = (π̃i : i ∈ I) can be defined by (13) on the

top of Page 4, ∀χ̃i ∈ X̃i, where χ̃k = (χ̃k
i = (χk

i , s
k
i ) :

i ∈ I) with ski being the abstract state at a slot k and

F̃i(χ̃
k
i ,ϕi(π̃(c)(χ̃

k)),πi,(t)(χ
k
i ),πi,(p)(χ

k
i )) is the immediate

payoff with χ̃k = (χ̃k
i : i ∈ I) and π̃(c) = (π̃i,(c) : i ∈ I).

Our previous work has verified that instead of playing the

original π∗ in the SG, the NE joint abstract control policy

given by π̃∗ = (π̃∗
i : i ∈ I) in the AG results in a bounded

regret [19], where π̃∗
i = (π̃∗

i,(c),π
∗
i,(t),π

∗
i,(p)) denotes the

best-response abstract control policy of SP i. Hereinafter, our

focus switches to the AG, in which a SP solves a single-agent

Markov decision process (MDP). Suppose all SPs play π̃∗ in

the AG. We denote Ṽi(χ̃i) = Ṽi(χ̃i, π̃
∗).



Vi(χ,π) = (1− γ) · Eπ
[ ∞∑
k=1

(γ)k−1 · Fi

(
χk,ϕi

(
π(c)

(
χk
))

,πi,(t)

(
χk

i

)
,πi,(p)

(
χk

i

))
|χ1 = χ

]
(12)

Ṽi(χ̃i, π̃) = (1− γ) · Eπ̃
[ ∞∑
k=1

(γ)k−1 · F̃i

(
χ̃k

i ,ϕi

(
π̃(c)

(
χ̃k
))

,πi,(t)

(
χk

i

)
,πi,(p)

(
χk

i

))
|χ̃1i = χ̃i

]
(13)

B. Linear Decomposition of Abstract State-Value Function

Two challenges remain in solving the optimal abstract state-

value functions for each SP i ∈ I when using dynamic

programming methods [21]: 1) a priori knowledge of the

abstract network state transition probability is not feasible; and

2) the size of the decision making space {π̃i(χ̃i) : χ̃i ∈ X̃i}
grows exponentially as |Ni| increases. From previous analysis,

the channel auction decisions and the computation offloading

as well as packet scheduling decisions are made in sequence

and are independent across a SP and its subscribed MUs.

Hence we are motivated to decompose the per-SP MDP in

the AG into |Ni| + 1 independent MDPs. Specifically, for a

SP i ∈ I , Ṽi(χ̃i), ∀χ̃i ∈ X̃i, can be computed as

Ṽi(χ̃i) =
∑
n∈Ni

αn ·Un(χn)−Ui(si), (14)

where the per-MU Un and the Ui(si) of SP i satisfy, respec-

tively, (15) (which is shown on the top of Page 5) and

Ui(si) = (1− γ) · τi
+ γ ·

∑
s′
i∈Si

P

(
s′
i|si, φi

(
π̃∗
(c)(χ̃)

))
·Ui(s

′
i) . (16)

In the above, π̃∗
(c)(χ̃) = (π̃∗

i,(c)(χ̃i) : i ∈ I), while Rn,(t)

and Rn,(p) are, respectively, the computation offloading and

the packet scheduling decisions under χn of MU n ∈ Ni.

We are now able to specify the number of needed channels

by a SP i ∈ I for its subscribed MUs in the area of a BS b ∈ B
as Cb,i =

∑
{n∈Ni:Ln∈Lb} zn and the valuation of obtaining

Ci = (Cb,i : b ∈ B) across the whole service area as

νi =
1

1− γ
·
∑
n∈Ni

αn ·Un(χn)

− γ

1− γ
·
∑
s′
i∈Si

P

(
s′
i|si,1{∑b∈B Cb,i>0}

)
·Ui(s

′
i) , (17)

which together constitute a bid π̃∗
i,(c)(χ̃i) = βi � (νi,Ci) of

SP i in χ̃i ∈ X̃i, where zn is given by

zn = argmax
z∈{0,1}

{
(1− γ)·Un

(
χn, z, π

∗
n,(t)(χn), π

∗
n,(p)(χn)

)
+

γ ·
∑
χ′
n∈X

P

(
χ′

n|χn, z, π
∗
n,(t)(χn), π

∗
n,(p)(χn)

)
·Un(χ

′
n)

}
, (18)

while 1{Ξ} equals 1 if the condition Ξ is satisfied and 0,
otherwise.

C. Learning Optimal Abstract Control Policy

It can be easily observed that at a current scheduling slot,

βi of a SP i ∈ I needs (si,P(s
′|s, ι − 1)) as well as

(Un(χn), zn, Ln) from each subscribed MU n ∈ Ni, where

s′ ∈ Si and ι ∈ {1, 2}. In this paper, we propose that SP i
maintains over the scheduling slots a three-dimensional table

Yk
i of size Si · Si · 2, entry yks,s′,ι of which represents the

number of happened transitions from sk−1
i = s to ski = s′

when φk−1
i = ι−1 up to a scheduling slot k. Yk

i is iteratively

updated using the channel auction outcomes. Then the abstract

network state transition probability at a slot k can be estimated

to be

P
(
ski = s′|sk−1

i = s, φk−1
i = ι− 1

)
=

yks,s′,ι∑
s′′∈Si

yks′′,s′,ι
, (19)

based on which Ui(si), ∀si ∈ Si is learned via (20) (which is

shown on the top of Page 5) with ζk ∈ [0, 1) being the learning

rate. The learning process converges if
∑∞

k=1 ζ
k = ∞ and∑∞

k=1(ζ
k)2 < ∞ [21].

When a priori statistics of MU mobility and computation

task arrivals is not available, Q-learning [21] finds Un(χn) for

each MU n ∈ N by defining the right-hand-side of (15) as the

optimal state action-value function Qn : X×{0, 1}×A×W →
R. Then we attain

Un(χn) = max
ϕn,Rn,(t),Rn,(p)

Qn

(
χn, ϕn, Rn,(t), Rn,(p)

)
, (21)

where an action (ϕn, Rn,(t), Rn,(p)) under a current local state

χn includes the channel allocation, computation offloading

and packet scheduling decisions. However, the tabular nature

in Q-function values makes the conventional Q-learning not

implementable. For the considered problem solving in this

paper, the sizes of X and action space {0, 1}× A × W are

calculated as |L| · (1 + A
(max)
(t) ) · (1 + |W|) · (1 + |T |) and

2 · (1+A
(max)
(t) ) · (1+R

(max)
(p) ), resulting in an extremely slow

process of Q-learning, where R
(max)
(p) is the maximum number

of data packets that can be transmitted over a channel.

The success of a deep neural network in approximate-

ly modelling the Q-function inspires us to adopt a deep

reinforcement learning (DRL) method [22]. We can then

approximate the Q-function by a double deep Q-network

(DQN) [23]. Mathematically, Qn(χn, ϕn, Rn,(t), Rn,(p)) ≈
Qn(χn, ϕn, Rn,(t), Rn,(p);θn), ∀n ∈ N , where we encap-

sulate in θn the set of parameters that are associated with

the DQN of a MU n. During the DRL process, each MU

n ∈ Ni of a SP i ∈ I is assumed to be equipped with



Un(χn) = (15)

max
Rn,(t),Rn,(p)

⎧⎨
⎩(1− γ) · Un

(
χn, ϕn

(
π̃∗
(c)(χ̃)

)
, Rn,(t), Rn,(p)

)
+ γ ·

∑
χ′
n∈X

P

(
χ′

n|χn, ϕn

(
π̃∗
(c)(χ̃)

)
, Rn,(t), Rn,(p)

)
·Un(χ

′
n)

⎫⎬
⎭

Uk+1
i (si) =

⎧⎪⎪⎨
⎪⎪⎩
(
1− ζk

)
·Uk

i (si) + ζk ·

⎛
⎝(1− γ) · τk

i + γ ·
∑

sk+1
i ∈Si

P
(
sk+1i |si, φk

i

)
·Uk

i

(
sk+1i

)⎞⎠ , if si = ski

Uk
i (si), otherwise

(20)

TABLE I
PARAMETER VALUES IN EXPERIMENTS.

Parameter Value
Set of SPs I {1, 2, 3}
Set of BSs B {1, 2, 3, 4}

Number of MUs |Ni| 6, ∀i ∈ I
Channel bandwidth η 500 KHz

Noise power spectral density σ2 −174 dBm/Hz

Scheduling slot duration δ 10−2 second
Discount factor γ 0.9
Utility price αn 1, ∀n ∈ N
Packet size μ(p) 3000 bits

Maximum transmit power Ω(max) 3 Watts
Weight of energy consumption �n 3, ∀n ∈ N
Maximum task arrivals A

(max)
(t)

5 tasks

Input data size μ(t) 5000 bits

CPU cycles per bit ϑ 737.5
CPU-cycle frequency 	 2 GHz

Effective switched capacitance ς 2.5 · 10−28

Exploration probability ε 0.001
Replay memory size M 5000

Mini-batch size |Ok
n| 200, ∀n ∈ N , ∀k

Activation function Tanh [27]
Optimizer Adam [28]

a replay memory of finite size to store the latest M his-

torical experiences, namely, Mk
n = {mk−M+1

n , · · · ,mk
n},

where each experience mk′
n = (χk′

n , (ϕk′
n , Rk′

n,(t), R
k′
n,(p)),

Un(χ
k′
n , ϕk′

n , Rk′
n,(t), R

k′
n,(p)),χ

k′+1
n ) happens at the transition

between two consecutive scheduling slots k′ and k′ + 1. To

perform experience replay [24], MU n randomly samples a

mini-batch Ok
n ⊆ Mk

n to train the DQN parameters using

the loss function in (22) on the top of Page 6, where θkn and

θkn,− are, respectively, the DQN parameters at a scheduling

slot k and a certain previous scheduling slot before slot k. By

differentiating LOSSn(θ
k
n) with respect to θkn, we obtain the

gradient as in (23) on the top of Page 6.

V. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments based on

TensorFlow [25] to quantitatively examine the performance

of the derived DRL-based scheme for AoI-aware multi-tenant

resource orchestration in a software-defined RAN. We set up

an experimental network with 4 BSs being placed at equal

distance 1 Km apart in the centre of a 2 × 2 Km2 square

service area [14]. The entire area is divided into 1600 locations

with each of 50×50 m2. The average channel gain for a MU

n ∈ N at Lk
n ∈ Lb covered by a BS b ∈ B during a slot k

is given by h(Lk
n,(u)) = H0 · (ξ0/ξkb,n)4, where H0 = −40

dB is the path-loss constant, ξ0 = 2 m is the reference

distance, while ξkb,n is the distance between MU n and BS

b [26]. The mobilities and the computation task arrivals of all

MUs are independently and randomly generated. Moreover,

we set An,(p) = A(p), ∀n ∈ N . For the utility function in

(11), we select U
(1)
n (T k

n ) = exp{−T k
n}, U

(2)
n (P k

n,(CPU)) =

exp{−P k
n,(CPU)} and U

(3)
n (P k

n,(tr)) = exp{−P k
n,(tr)}. We

design for each MU a DQN with 2 hidden layers with each

consisting of 16 neurons. Other parameter values used in the

experiments are listed in Table I.

For the purpose of performance comparisons, we simulate

three baseline schemes, which are specified as follows.

1) Channel-aware (Baseline 1) – At the beginning of each

slot k, the need of obtaining one channel at a MU n ∈ N
is evaluated by Hk

n,(u);

2) Queue-aware (Baseline 2) – Each MU calculates the

preference between having one channel or not using a

predefined threshold of the queue length;

3) Random (Baseline 3) – This policy randomly generates

the value of getting one channel for each MU at the

beginning of each scheduling slot.

With the three baselines, if being assigned a channel by the

SDN-orchestrator, a MU proceeds to offload a random num-

ber of computation tasks and schedule a maximum feasible

number of data packets.

We first demonstrate the average utility performance per

MU per scheduling slot achieved from the proposed DRL-

based scheme and the three baselines under various traffic

loads A(p) of traditional mobile services. In this experiment,

we assume that J = 11 channels are shared among the

MUs in the network. The results are depicted in Fig. 1, from

which we can observe that the proposed scheme achieves

a significant performance gain. However, the average utility

performance deceases as the traffic load of traditional mobile

services increases. The reason behind is that more data packet

arrivals lead to larger queue length, larger AoI and higher

energy consumption across the MUs. Then in Fig. 2, we

exhibit the average utility performance versus the number of

channels, where the traffic load of traditional mobile services



LOSSn

(
θkn
)
= E(χn,(ϕn,Rn,(t),Rn,(p)),Un(χn,ϕn,Rn,(t),Rn,(p)),χ′

n)∈Ok
n

[(
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γ ·Qn

(
χ′

n, argmax
ϕ′
n,R

′
n,(t)

,R′
n,(p)

Qn

(
χ′

n, ϕ
′
n, R

′
n,(t), R

′
n,(p);θ

k
n

)
;θkn,−

)
−Qn

(
χn, ϕn, Rn,(t), Rn,(p);θ

k
n

))2]
(22)

∇θknLOSSn
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n
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(
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,R′
n,(p)

Qn

(
χ′
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′
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n,(p);θ
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n
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)
−Qn

(
χn, ϕn, Rn,(t), Rn,(p);θ
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Fig. 1. Average utility performance per MU per scheduling slot versus A(p).

is fixed to be A(p) = 3. More channels available in the system

provide more opportunities for the MUs to transmit the data

of computation tasks to be offloaded and scheduled packets.

Hence better average utility performance can be expected for

the MUs. When there are a sufficient number of channels in

the network, the data transmissions of all MUs can be fully

satisfied. Both experiments show that the proposed scheme

outperforms the three baselines.

VI. CONCLUSIONS

In this paper, we investigate the problem of AoI-aware

resource orchestration among multiple non-cooperative SPs

in network slicing, which is formulated as a SG. Without

private information exchange among the competing SPs, we

reformulate the SG as a AG. Each SP is hence able to behave

independently with the local information only. We further

observe that the decisions of the channel auction and the

computation offloading as well as packet scheduling are made

in sequence, which motivates us to linearly decompose the per-

SP single-agent MDP. In this way, the decision making process

at a SP is greatly simplified. To address the huge state space,

we propose a DRL-based scheme to solve the optimal abstract

Fig. 2. Average utility performance per MU per scheduling slot versus J .

control policies. Numerical experiments verify our theoretical 
studies and showcase that the performance achieved from our 
scheme outperforms the other baselines.
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