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Abstract—A novel channel model has been proposed for mo-
bile millimeter-wave (mmWave) massive multiple-input multiple-output
(MIMO) communications to evaluate the effect of end-user mobility. In this
model the variance of number of clusters and number of rays generated
from each cluster is taken into account that is novel and different from
widely used channel models. Two optimum codebook based beam-tracking
schemes-multi-objective joint optimization codebook (MJOC) and linear
hybrid combiner (LHC)- have been proposed for the novel channel model
and their performance for spectral efficiency (SE) is presented. Perfor-
mance for the two most commonly used channel state information (CSI)
estimation approaches is investigated. Finally, the relationship between
the beamforming training blocks and optimal beam tracking scheme is
presented.

Index Terms—millimeter-wave, MIMO, wireless communication.

I. INTRODUCTION

Shifting the wireless communication to millimetre wave (mmWave)
from centimeter-wave (cmWave) spectrum can be a promising way
to significantly improve the capacity. By decreasing the wavelength
of transmitted signals, mmWave technology enables the realization
of massive MIMO communications and beamforming technology.
Achieving and operating with an accurate channel state information
(CSI) is one of the main concerns for a transceiver architecture at
mmWave, since it can greatly effect the performance. However, the
perfect CSI estimation is becoming more difficult to achieve due to high
user mobility and mmWave channel characteristics. In [1] a joint opti-
mization algorithm has been proposed for hybrid precoding in mmWave
MIMO systems, where precoding processing is divided into two parts as
the baseband and radio frequency (RF) precoding and both processes are
jointly optimized as a multi-objective codebook optimization problem.
This approach helps the problem to be tractable. In another interesting
research [2], at every stage of angle of arrival (AoA)/angle of departure
(AoD) estimation, a problem of sparse signal reconstruction should be
resolved by applying the convex joint precoder and combiner design
(JPCD) scheme. However, this beam tracking scheme is limited to the
application of small deviations of the AoAs/AoDs. By exploiting an
iterative signal processing approach [3], the JPCD scheme decompose
the given non-convex problem into a set of convex subproblems. Even
though this scheme can perform effectively in the entire training blocks
regime for perfect CSI, it cannot be practical due to low latency require-
ments of modern systems. Similar challenges to the above described
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can be seen in most of the optimum mean squared deviation (MSD)
based hybrid combiner schemes [4]. The mmWave channel is sparse
in space and beam misalignment may quickly lead to increased MSD,
hence an algorithm called as linear hybrid codebook (LHC) scheme
can be a good candidate to employ to align beams since it is shown
to perform well in mobile scenarios. Another beam tracking technique
that performs well for vehicle to-vehicle (V2V) communications is by
[5], but it is not designed for mmWave communication.

Although interesting research, above schemes assume channel mod-
els where the number of clusters and number of rays generated from
each cluster are fixed despite user mobility. This assumption is not
practical. In practice, with the change in users’ geographical position
there will be a variance in the number of clusters and number of rays
generated from each cluster during a communication. In case these
characteristics are not considered and handled with an appropriate
signal processing at the receiver, the received signal’s quality may be
significantly degraded. To address this open issue, this paper proposes
a channel model that the variance of number of clusters and number
of rays generated from each cluster is taken into account. Also, pro-
poses two optimal codebook based beam-tracking schemes such as
multi-objective joint optimization codebook (MJOC) and linear hybrid
combiner (LHC) for the novel channel model and investigate their
spectral efficiency performance to provide seamless connectivity to
users.

II. SYSTEM MODEL

A mmWave massive MIMO communication system is assumed,
where a BS denoted as 7', is equipped with B, number of antennas and
Bprr number of radio frequency (RF) chains. The BS is performing a
downlink (DL) communication to a user with B, number of antennas
and Brp number of RF chains subject to B, < Brp < Bp, and
B; < Brr < Bpg,,where By is data symbol blocks. The total number
of subcarriers is represented by C' and a data symbol carried at the
cth subcarrier is denoted by s[c] for ¢ = {1,2,...,C}. At T}, s[c]Vc
are initially precoded by applying a baseband precoding matrix F'[c]
with the dimension Brpr X Bs, and passed through Brpr number of
C-point inverse discrete Fourier transform (IDFT) to convert digital
symbol blocks into time-domain. The [.-length cyclic prefix (CP) is
then appended to the time domain symbol blocks prior to applying the
RF precoding matrix Frp € CBTe*BrF At R, the received signal is
initially coupled with an ideal carrier and frequency offset synchronizer
by applying an RF combining matrix G pr € CPBRz*BRF Next, time-
domain symbol block samples are transformed to the digital symbol
blocks by removing the CP and applying C-point dicrete Fourier trans-
form (DFT) together with the combining matrix G|c] € CBrF*Bs,
Thus, received signal at subcarrier ¢ can be expressed as [1], [6],

Xjld = G| GrpHi ;e FlFrrs(c] + GT[dGrpwld, (1)

where (.)* represents optimum matrices of G|[c] and G g respectively
from quantization codebooks to get the best signal power, H; ;(c)
denotes the channel matrix for subcarrier ¢, where 7 represents the
i*" antenna element and j represents the j* user as the receiver. The
additive white gaussian noise (AWGN) at the c*® subcarrier of the
receiver is defined by w(c] ~ A47(0,0%I). w(c) is independent and
identically distributed (i.i.d.), and has a zero-mean with ¢ variance,
where o stands for standard deviation and I indicates the identity
matrix.



Suppose the end users are not static and undergo a high speed
mobility. The downlink (DL) signal from BS to the receivers will
undergo a Doppler shift due to the receiver’s mobility. Doppler shift
effects have been extensively studied by widely used channel models.
However, at massive MIMO systems user mobility will also have
considerable effect on the number of clusters and number of rays
generated from each cluster for a transmission. For a multi-antenna
system with A antenna elements and separation distance of d, between
two neighboring antenna elements, denote Z(¢) as the number of
discovered clusters at time ¢ and z = {1,2,...,Z(t)} as the index
of the cluster. The Doppler frequency shift due to velocity v in the
context of antenna element a € {1,2,..., A} can be expressed by [7],

fla,t,z) = fLCv cosf(a,t,z), ?2)

where f. denotes carrier frequency at which signal modulation
occurs, ¢ denotes speed of light, 6(a,t,z) is the angle between
arriving wave via the z*" cluster at the a*" antenna element and the
direction of motion, given by (see 3GPP TS36.104) cosf(a,t,z) =

difady i Bz vt o ditBz vt for ) >>ad, which
\/(d1+ad2+Az—ut)2+d§ \/(d1+Az—ut)2+d§

shows that cosO(a,t,z) will be almost same for all a in such a
case. Az is the 2" cluster’s angle of arrival offset with respect to an
arriving wave with a single cluster that is taken as a perpendicular
wave. Az ~ U(1,27), where U denotes uniform distribution. d,
denotes distance between the user and the first antenna element in
a row, dz denotes distance between the user and the BS. Note that
at (2), parameters a, t, andz are independent of each other and
Doppler frequency shift can be averaged over them one by one. For
the mathematical tractability of analysis, without loss of generality,
let f = E[f(a,t,z)] be the expected value of Doppler frequency shift
with respect z, where E[.] is the statistical expectation.

All the antenna elements apart from multi-antenna arrangement
system can simultaneously capable of receiving the signal, hence the
message signal can be modulated with the sampling period 7’ keeping
M symbols in a single data frame. Therefore, MIMO channel with
Rician fading effect at the m*" symbol can be modelled as [8, refer to

1.

A
Z - jZﬂ'fstHlj(T t) Ym = {l 2. M}7 (3)
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where A = Br,, a denotes Path-loss exponent, d, = d; + ada, dIT

B el + Uq = Tee?Pe in which

R =]
g ~ €4 (0,1) and K denotes shape parameter. r,, follows the Rician
distribution with the centre 1 and arbitrary phase shift 3, due to
propagation of the signal is uniformly distributed over [0, 27]

The probability density function (PDF) of r,,Va € [0, N] can be

expressed as,

denotes path-loss, h, =
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In order to consider the frequency spectrum and scattering cluster
properties of mmWave, we introduce a wideband MIMO channel model
with Z clusters. Suppose that, there is presence of Y rays between T,
and R, for each of z clusters alongside a time delay 7.. Besides, each
ray associated with each of z clusters produces horizontal and vertical
angle of arrival (AoA), {¢r,, -y, IR, -y} € [0,27], and horizontal and
vertical angle of departure (AoD), {1, -y, V1, 2y} € [0,27], V2 =
{1,2,...,Z} and Vy = {1,2,...,Y}. We have used the notation 7,

ra K

K+1 @

p(”l‘a, O) =

for the relative time delay for each of y rays. Therefore, the delay-7
channel matrix, denoted by H; ;(1) € CP7*BRa can be expressed
as, provided by (2) in [9],

Z(t) Yz(t)

\Fzzgy L= Ty)

z=1 y=1 (5)

H; ;(7,t)

VR, (¢Rm,zy» 19Tz¢zy)’/ﬁ (¢Tz,zy> ﬁTm,zy):

where (.)# stands for Hermitian transpose operator, o, indicates
the gain of 2" cluster, I'(tts — 7, — 7,) denotes the raised cosine
pulse for ts-spaced sample s1gnals determined at (7t, — 7, — 7),
vr, (Or, ) € CBRa*V and vy, (@7, .) € CBT=*! are the array re-
sponse vectors for 2, and 7, antennas, respectively. At the places
where the presence of a baseband signal avoiding outage was discov-
ered by a heuristic process, the poisson distribution of the number of
discovered clusters can be expressed as below [10, refer to section
‘Cluster Numbers and Hybrid Beamforming Performance’],

Z(t) ~ max{Poisson(¢), 1}, (6)

where ( set to heuristic mean of Z(t).
The time delay, 7., associated with each cluster can be expressed as,

Mog, V2, (7

where 7, denotes delay scaling variable which signifies the impact on
power fraction for delay among the clusters, V. stand for a uniform
random variable V, ~ V[0, 1].

The cluster z is considered to be reduced or increased in amount of
power consumption according to the factor as given below [11],

T, = —a;(

ar—l
P =€ (WTC" ) 107015= " where K. ~ .4(0,0%) (8)

The ultimate power fragments in individual clusters are served with
the use of normalized P, to unity, hence usage of power in the k'
cluster can be presented as,

b,
P, = X:Z—P )
i=11%

Now, by using (7), (8) can be re-expressed as,

P, = el-ar)log, Vol |g-0.1K:

(1 ar)

loge IO—OAIKZ

(10)
— Vz(lfotq—) 1070.1Kz

The feasible number of rays that can be generated in the context of
each cluster as [11],
Yz ~D(1,2), (1
where D denotes discrete uniform distribution (DUD) ' with integers,
1 and Z. By following the properties, PMP and CDF of Y ;) can be
written as & and £.
Based on the MIMO channel response given in (1), the channel
matrix between the i*" antenna element and the j*" user at subcarrier
c can be expressed as,

H, 4l = Z%,] exp{y( )T}

where [ < I + 1 is the [*" tap in the mmWave channels.

12)

1 Properties: A discrete uniform variable Yz (¢) with integers z; and 2,
where z; < x;, has the probability mass function (PMF) and the cumulative

distribution function (CDF), respectively, as below: f(y) = ﬁ, Yy =
{.’L‘],%] +1,... 712} F(y) = P(YZ(t) < y) = ;cgzizllil]v Vy = {xhzl +
1,...,z2}.



A. Perfect CSI (Case Study I)

Under the ideal condition, the ergodic achievable sum-rate of the j*
user for perfect CSI (PCSI) can be determined by [12],

Rjpest =E [log, |I; + V'Y ;Y] (13)

where I; = Uj H GH F; ;, U; denotes channel independent beam-

former at the BS, F;, denotes DL precoder at the j*" user

for the 7*" BS and is given by ”—G”(GHG )

Gij=Gij+>e=1,y/ %G, ;U,UH, where G;; denotes DL
T#Ei °

combiner at the j*" user for the i** BS and G, denotes
the estimation of combining matrix G;;, ¥, pilot sequences
transmitted from z'* BS. V; = o*?U/TU; + 3 0= Y, .Y/ Y.

£j

7,z
Zie/ﬂ(m) VP UGG, (G Gy i) ' Uy, payi denotes the co-

efficient that regulates the power transmitted by " BS to
" user.

B. Imperfect CSI (Case Study II)

Under the non-ideal condition, the ergodic achievable sum-rate of
the j*" user for imperfect CSI (IPCSI) can be determined by [13],

Rjrpcsr = (14)

where Y =Yt (@) VPig Yirso Y, ; =E[UJGHEF, ],
Vi =?UfU; + X ic a2y Zyeott (@) VPoiPuiMiy,i +

Z%?@ Yict(x) 2ayett(z) VPiw PyalNijay, Miy; =
B(UGILFyy ~ BIUSGILELD) x (UG F,

IHUHGH ygDHTNJ,w—WUHGH UGy Ez]

E [log, [I; + V; 'Y ],

III. CODEBOOK-BASED BEAM TRACKING SCHEMES:

In beamspace based massive MIMO communications, user-
equipments’ (UEs’) locations in the orthogonal subspace is the main
criteria to achieve the optimum response. In this section, two code-book
based beam tracking schemes are proposed for the novel channel
model.

A. Multiobjective Joint Optimization Codebook
(MJOC) Scheme

MIJOC scheme is performing a joint optimization of baseband pre-
coding matrix F'[¢] and RF precoding matrix F'r ¢ [c] subject to sum-rate
and RF chain constraints. Multiobjective joint optimization with con-
straints are challenging problems that may need a number of problem
transformations to become computationally feasible. To find a solution
for MJOC, let us introduce three discrete relaxation parameters by the
notations /15, §; and ®; with the assumption thaty; > p;, R; > §; and
@, refersto the 5 column of F'[c] € CBrzn j = {1,..., J}, where
J represents the total number of users. «v; = 22BR= represents the high-
estachievable signal to noise ratio (SNR) given that the rank of the chan-
nel is not less than Br, . The approach using tailored big-M constraints
[14, refer to sections 5.4 and 6.2.2] are employed to solve the discrete-
continuous optimization problem. By following the upper bound big-M
constraint, the optimal codebook design problem with limited sum-rate
constraint can be formulated as a continuous relaxed parameter
problem as,

15)

J
max E 5]'Rj,
Ky 65,%; =

Subject to: 1 + p; > €%, (15a)

Vi = gy = 05,5, (15b)
J A~

> 112 FrrlB < Pras, ||®llo < Brr, (15¢)

j=1

where Sj = ¢% — 1, (15a) is a convex condition on Rjz, P4 denotes
the maximum feasible transmit power, ||®||) < Bry denotes Ly-norm
3 constraint for RF chain that signifies the preferred codewords can
not be higher than the available RF chains.

In order to deal with non-convex conditions given in (15b) and
(15¢), Lo-norm constraints are initially transformed into the following
objective function,

J
max 25 R, + Z[|®]]o,

K05, ®j

(16)

Subject to: (15b) and Z |2 Frr||3 < Ppas,where = is applied
as a co-efficient of Lo-norm to ensure the control over a
sparse solution and satisfy the Ly-norm condition in subsequent
steps.

Further to deal with inducing group-sparsity and quality sparse signal
recovery from Ly-norm minimization problem, the square of convex
L..-norm can be viewed as a relaxation of a non-convex Ly-norm mini-
mization problem without changing the conditional properties. Besides,
L. -norm offers sparse signal reconstruction and sparse solution from
a few measurements.

Next, the non-convex Ly-norm problem can be re-expressed as a
square of convex L..-norm problem as follows,

max Z5R + Z||F| %, (17)
J

g8, P

Subject to: (15b) and Z] @i Fre|)3 < Poas-
Further, if the vector norm is a L,-norm, then the induced matrix
norm should satisfy the below property:

Br,
1Flloe = Z max 5 (i (18)
Therefore,
Br, )
171 = { 22 max| @ (i)
=1
Br, Br,
=22 o <i1)|)
i1=11iy=1 (<J€{1
ti oG
imes (jeg{?%Jﬂ J(zz)|>>
Br, BT,
=22 mx Qus(@y)l (9
o=1 y=1"°! s2€{l,...,
2% js convex on objective function R, for any a € R [15].

3L, norm: ||®||, < Brp,p > 1.



where Qs, s, =
1 5 V{SI 5 Sz}.
Hence, (17) can be re-expressed as,

O, B, V{s1, 8} for Qy, s, = Oandrank (Qs, s,) =

J
max Y 6;R; +E||FL, (20)
Hj»fsj»Qsl,sz J=l
J A
Subject to: 1 + p1; > eéf,Ztr (FRFijj) < Praz-  (20a)
j=1

Vi > Wy > 05,4, Q4 = 0 and rank (Q, 4,) = 1,
VS] 5 VSZ, (20b)

where FRF = FgFFRF. Substituting back into (1), it can be re-
expressed as,
X; =G GrpHi;Q;; + G Grpw. 2D

In order to improve the performance at the short training blocks
regime keeping the target of lower-complexity receivers design in mind,
we require a hybrid combiner with low mean squared deviation (MSD)
between the transmitted and received signals.

It has been shown by [16] that MJOC’s performance may be limited
when the number of beamforming vectors at 7}, and/or combining
vectors at R, is limited. That is the reason why we propose the LHC
scheme next, as an ideal scheme for such scenarios.

B. Linear Hybrid Combiner (LHC) Scheme

We propose LHC scheme by following the MSD minimization as an
optimization problem with a constant F'[¢] Frr and weight matrix &,
and is given as,

* *
(G ’ RF)
= arg min

GE(CBRF xBg R
GRFE(CBRI xBRrp

[tr{¢E [|ls — G" G X][3]} — log, €].

(22)
By [17], the solution of (22) can be expressed as,

Glgp =E[sXTE[X X ]!

1
= gFHF,QIFHH

1 -1
X (B FFrpHFP P HY +g21)
= FHFR HY (FFp HFY FE.HY + B.o?1) ™. (23)

Since this solution cannot be break down into a product of G and
GH .., we should further restate the problem of (23) by following the
methodology applied in [18], given as,

E[lls - G"GRp XS]

=E [(s - G"GEpX)" (s - G"GEpX)]

=E [tr((s — GHGEX)" (s - GP G X))] (24)

= tr(E[ss™]) — 2R{tr(E[sX |GG rr)}
+tr(GIGE.E[XXTGGRrF).

Now, by using (23) and Theorem 8.35 of [19], (24) can be re-expressed
as,

x(G,Grr)

=tr (G spEIXX™Grsp) — 2R{tr(E[sX"]GGrr)}
+tr (GYGRREXXT]GGRrF)

=tr (GspEXX"Gunsp)
— 2R {tr(G s pEIX XT|GG R}
+tr (GPGRFE[XX"|GGRrr)

=tr ( (Gﬁ{[SD - GHGgF>]E[XXH]

X (G]}\ILS'D - GHGgF)H>
= |EX X} (Glsp — GHGHp)| [ (25)

Hence, the minimum MSD problem can be expressed as,

min
GE(CBRFXBS,
(CBRTXBRF

(G", G = arg [ir{ el pexe?

GRF
(Girsp — G"Ghp) ||2F} — log, 5}7 (26)

where ||.||% denotes the standard Frobenius norm and (26) indicates
to observe the prediction of Gpssp without a limitation over the
cardinality of GHGgF for Grp € CBRra*BRrRF The MSD estimation
problem is a joint estimation problem of multiple signal realizations,
especially when the signal samples have a joint sparse support over a
given constraint. Hence, address the problem by the product of F' and
Frr as an optimal precoder and determine GG g . The sparse signal
approximation for the best matching projection is given by Algorithm 1.
The following optimization problem presents an algorithmic solution,

min IVE(Gusp — E [XX"] GrrG)|f}, 27)

subject to: ||diag(GG*)

|0 = BRF and ||V§Izé||2 = Pmaz.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, numerical results are provided for the developed
channel-model and beam tracking schemes. System performance has
been evaluated based on the metrics given by (13) and (14) for the two
common practices in channel estimation. The aim at both studies in
the context of CSI is focus on the insightful performance comparison
of ergodic achievable sum-rate maximization for benchmarking. CSI
on a subcarrier with respect to each user can be estimated periodically
through the pilot sequence (periodic reference signal). Discrete Fourier
transform and discrete cosine transform based methods are popular
family of channel estimation methods for multi-carrier systems [20].
[20] have shown that by employing the least squares and linear min-
imum mean square error (MMSE) techniques estimates for the CSI
can be achieved with mean square error about 1076 for SNR > 25
dB. [21] proposed an adaptive estimation method to predict users’ CSI
for varying user mobility profiles (including velocity). The method is
based on the concept of Gaussian process regression and a dual-control
technique is used to determine the most appropriate prediction time to
keep the packet loss rate below a pre-defined threshold with the given



Algorithm 1: Sparse Signal Approximation for Best
Matching Projection.

1. Function: Sparse
_Tx_Rx(vr,,X,Gusp, Brr, Prac)
2. Inputs: vr,, X,Grsp, Brr, and Pq, (I
applicable)
3. Initialization:
Ggrr + Empty Matrix, Gtem — Gusp
4. while [ < Bgrp do
5. w= yng[XXH]Gtem
6. d = argmax,_(1,.. zy(wwh).,
y={1,:-,Y}
7. GRF = [GRF|yfl?rw]
8.
G = (GgF]E[XXH]GRF)_1G§IFE[XXH]GMSD
9. Grom = \/E(GJUSD_E[XXH]GRFG)r
L IVE&(Grmsp—EXXH|GrrG)||%
10. Norr‘nali‘ze G .= Pmaxm, If the power
constraint is active.
11. Outputs: Ggrr, G

TABLE 1
THE MAIN SIMULATION PARAMETERS

Parameter Value Parameter Value
User’s velocity | 20m/s Distance from BS to users | 40m
Data rate 133 Mbps | Number of BSs 32
Wavelength 0.15m Channel coherence 64 blocks
Doppler 133Hz Normalized doppler fre- | 10~°
frequency quency

SE(b/s/Hz)

—+— Perfect CSI: MJOC
~—+ Perfect CSI: LHC
—=— Imperfect CSI: MJOC]|
—&— Imperfect CSI: LHC

—«— Perfect CSl, 0=2
Perfect CS1a=2.5 02
—#— Imperfect CSl,0=2

—=— Imperfect CS1,0=2.5

1 0 20 40 60 80 0 500 1000 1500 2000 2500
No. of users Training Blocks
(@) (b)
Fig. 1. Figure 1: (a) SE performance versus the number of users at the system

for PCSIand IPCSI cases with € {2,2.5}. (b) SE performance versus training
blocks (i.e. number of beamforming vectors at Tx x number of combining
vectors at Rx) for MJOC and LHC schemes.

user mobility. It has been shown that packet loss less than 1% can be
achieved even with 60 km/hr velocity given that appropriate prediction
time is set. Table I provides the details about the simulation parameters.
As CSl is a crucial aspect of reliable high data-rate communications in
MIMO channel, perfect and imperfect CSI, respectively, at 7', and R,
are assumed at the simulations.

Fig. 1(a) shows the spectral efficiency (SE) performance versus the
total number of users for PCSI and IPCSI cases and path loss exponent
a € {2,2.5} to simulate different level of signal degradation due to
imperfect CSI estimation and increase in a.. The aim of simulations is
to investigate if one’s effect can dominate the other. SE in this paper
is defined as the uncoded bit rate per unit bandwidth. It can be seen

from the figure that the performance of both channel estimation cases
for different values of a increases as the number of users and this is due
to multi-user gain. The behavior of the curves corresponding to a = 2
and o = 2.5 for PCSI are similar with a large difference in performance
as the number of users gets large. This shows that o has a significant
effect on the performance since PCSI can be realized and this effect
increases as the network gets densely populated. Plots for IPCSI with
a =2 and a = 2.5 show a similar response with marginal difference
in performance for all the considered cases of number of users. This
shows that o (for the considered values) do not have a significant effect
on performance when IPCSI case is considered. The reason is that
channel estimation error dominates the performance degradation due
to increased value of «v.

Fig. 1(b) shows the SE performance versus number of training blocks
for MJOC and LHC schemes for the cases in which PCSI and IPCSI
are applied. The performance for both schemes and CSI cases increases
with respect to the increasing length of training blocks. Slight variations
can be seen at the performances due to the assumptions/relaxation
in optimization problem formulation of baseband matrices and MSD
minimization. Performance variations of MJOC scheme is shown to
be higher with respect to LHC, especially at the case of IPCSI and
short training blocks. The main reason is that compared to LHC, joint
optimization of baseband and RF precoding matrices makes MJOC
more sensitive to the channel estimation error due to IPCSI and may
cause more frequent deviations from the optimal solution. With the
increase of the training blocks size to a medium and/or large length
(e.g. 600 and higher), the impact of channel estimation error becomes
insignificant and the variation of MJOC’s performance reduce to a level
similar to LHC. For the short training blocks regime (e.g. up to around
400), LHC scheme outperforms MJOC for both IPCSI and PCSI cases.
For the medium to large training block length, it can be seen that MJOC
scheme outperforms LHC scheme for the PCSI and IPCSI cases. Thus,
it can be seen from the figure that the number of training blocks has a
significant effect on the choice of beam-tracking scheme to be employed
to achieve the best SE and interestingly the stability of the performance
of schemes.

V. CONCLUSION

In this paper, a novel channel model for mmWave communications
has been proposed to incorporate varying number of clusters and
number of rays generated from each cluster due to user mobility. Two
optimal beam-tracking schemes -MJOC and LHC - have been proposed
for the novel channel model that exploits the channel correlation
information among UEs and optimize the SE. Simulation results are
presented to investigate the performance of two most common practices
in CSI estimation, the PCSI and IPCSI, and effect of training block’s
length on the choice of beam-tracking schemes to achieve the best SE
performance. It is shown that the LHC scheme is suitable when training
block is short, while MJOC scheme is preferable for medium to long
training blocks.
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