
IEEE Network • September/October 201982 0890-8044/19/$25.00 © 2019 IEEE

AbstrAct
With the development of technologies such

as the Internet of Things and artificial intelligence,
mobile applications are becoming more and
more intelligent. Compared to traditional appli-
cations realized by mobile cloud computing tech-
nology, these novel applications have a higher
requirement for a task offloading scheme. How-
ever, the traditional task offloading schemes are
hard pressed to meet latency and personalization
requirements of these new applications. For intelli-
gent application, how to realize personalized and
fine-grained task offloading is still a challenging
problem. Therefore, we propose a scheme called
intelligent task offloading (iTaskOffloading) for a
cloud-edge collaborative system, which can pro-
vide personalized task offloading. To be specific,
we first propose the architecture of iTaskOffload-
ing which includes the local device layer, edge
cloud layer, remote cloud layer, and cognitive
engine. Then we analyze the method of iTaskOff-
loading, which contains coarse-grained computing
and fine-grained computing. Finally, we build a
testbed to evaluate the proposed iTaskOffloading
scheme using a typical intelligent application of
emotion detection. The experimental results show
that compared to the traditional cloud computing
scheme, iTaskOffloading has less task duration.

IntroductIon
Nowadays, with the development of technolo-
gies such as the Industrial Internet of Things
(IIoT) [1] and artificial intelligence (AI), current
mobile applications (e.g., virtual reality and emo-
tion detection) are more and more intelligent.
These intelligent applications need not only large-
scale and personalized data but also support for
AI algorithms. Since mobile devices suffer from
limited battery and computing capacity, it is nec-
essary to offload these intelligent applications to
the cloud [2]. However, when a large number of
devices are connected to the cloud, large latency
may be incurred because the cloud is far from
users [3, 4].

In order to solve these problems, both aca-
demia and industry propose edge computing [5,
6]. Compared to cloud computing [7], edge com-
puting satisfies the needs of low latency of users’
tasks by deploying servers on the edge. At present,
most of the interesting studies on edge computing
focus on solving the problem of energy efficien-
cy from the perspective of communication [8, 9].

However, they do not consider how to solve the
task offloading problem of intelligent application
with personalized data and an AI algorithm.

Aiming at the problem of task offloading, each
intelligent application can act as an independent
task [10]. By taking the personalized data of users
into consideration, the processing of each task
can be different [11]. Correspondingly, the com-
puting methods of the tasks in various network
conditions need to be differentiated. Thus, for the
intelligent application, we need to consider using
intelligent technology to decide “What” is need-
ed and “How” to compute the task. In addition,
to achieve efficient task execution, we need to
choose a computing location among local device,
edge cloud, and remote cloud (i.e., “where to
compute”). However, existing works do not con-
sider the problem of this intelligent application
task offloading. Therefore, for intelligent applica-
tion, how to design a personalized task offloading
strategy is still a challenging problem.

In this article, in order to solve the problem
of task offloading in intelligent application, we
propose an intelligent task offloading (iTaskOff-
loading) scheme for a cloud-edge collaborative
system. To be specific, we first combine the cog-
nitive engine with the traditional cloud-edge col-
laborative system, and propose the architecture
of iTaskOffloading. This architecture can not only
recognize the resources from local device, edge
cloud, and remote cloud, but also understand the
task of intelligent application. Then, based on the
above proposed architecture, we give the meth-
od of iTaskOffloading and design a scheme of
fine-grained task offloading for the separability of
intelligent application tasks to enable personalized
task offloading. Finally, we build a real testbed and
demonstrate the performance of iTaskOffloading.

In summary, the main contributions of this arti-
cle include:
• Based on the cloud-edge collaborative sys-

tem, we propose the iTaskOffloading archi-
tecture, which includes the local device
layer, edge cloud layer, remote cloud layer,
and cognitive engine. Using the cognitive
engine, we can realize the cognition of
resources and the intelligent application task.

• We give the method of iTaskOffloading,
which includes what to compute, how to
compute, and where to compute the task.
Furthermore, in the scheme, we propose the
fine-grained task offloading, which can real-
ize personalized task offloading.

iTaskOffloading: Intelligent Task Offloading for a Cloud-Edge Collaborative System
Yixue Hao, Yingying Jiang, Tao Chen, Donggang Cao, and Min Chen

EDGE INTELLIGENCE FOR THE INDUSTRIAL INTERNET OF THINGS

Digital Object Identifier:
10.1109/MNET.001.1800486

Yixue Hao, Yingying Jiang, and Min Chen are with Huazhong University of Science and Technology; Tao Chen is with VTT Technical Research Centre of Finland;
Donggang Cao (Corresponding author) is with Peking University.

IEEE Network • September/October 2019 83

• Based on the intelligent application of emo-
tion detection, a real testbed is built to veri-
fy iTaskOffloading. The experimental results
show that the iTaskOffloading scheme has
less latency than traditional cloud comput-
ing.
The remainder of this article is organized as fol-

lows. In the next section, we propose the system
architecture. Following that, an offloading strategy
is explained. The testbed and related experiments
are then presented. Further research topics are
then listed. Finally, our conclusion is given.

system ArchItecture
In this section, we give the system architecture,
including the local device layer, edge cloud layer,
remote cloud layer, and cognitive engine.

system overvIew
The system architecture includes the local device
layer, edge cloud layer, remote cloud layer, and
cognitive engine, as shown in Fig. 1. In order to
illustrate the system overview, we use emotion
detection as an example. First, the user collects
multi-modal emotion data through wearable devic-
es. Then, after getting the emotion data, the user
needs to offload the computing task. Consider the
personalization of emotion data. When different
users have various requirements on the latency of
emotion detection, the emotion computing task
should be offloaded to different locations (i.e.,
local device, edge cloud, and remote cloud) for
further processing. The cognitive engine deter-
mines the personalized offloading strategy. Finally,
after the emotion task is processed, the result will
be fed back to the user, and the user will obtain a
personalized healthcare service.

LocAL devIce LAyer
The local layer includes local devices such as
smartphone, robot, and wearable devices, which
can collect data of intelligent applications. Fur-
thermore, due to the relatively low computation
capability and storage capability of local devices,
when a user has excessive requests or a comput-
ing task of great complexity, it is not suitable to
process the data on local devices. However, local
devices are the closest device to the user, which
can produce low communication latency, so it is
suitable for processing simple tasks that are very
sensitive to latency [12]. Furthermore, since the
computing capacity of a local device is limited,
the AI algorithm deployed in the local device
layer is simple.

edge cLoud LAyer
The edge cloud layer, as a middle layer, can
process a computing task. Edge cloud is com-
posed of numerous edge services with comput-
ing and storage capability. The edge server can
be deployed in a gateway, router, and so on.
The computing and storage ability of edge cloud
is weaker than that of remote cloud. However,
the communication latency is much lower than
that of remote cloud. Generally speaking, mobile
devices are connected to edge cloud through a
single-hop wireless network. Thus, the communi-
cation latency is decreased greatly to satisfy the
demand of a computing task with latency sensi-
tivity. The computing ability of edge cloud is bet-

ter than that of a local device. Thus, we deploy a
complex AI algorithm on the edge node to pro-
cess the task.

remote cLoud LAyer
A remote cloud represents a large data center
that is distanct from the user. It can deploy a
high-performance AI algorithm and stores a large
amount of user historical analysis data. Thus, it
can provide highly precise computing and be
used for computation-intensive tasks. Taking emo-
tion detection as an example, emotion data is
private with the heterogeneous features. Thus, it
records a behavioral habit of a user and maps it
for further computing rules to achieve more accu-
rate prediction and better user service using the
user features or behavior cognition. However, the
shortcoming of cloud computing is high latency
due to the far distance between the cloud data
center and the user. Furthermore, we give the
comparison of local computing, edge computing,
and cloud computing from the computing capac-
ity, storage capacity, distance between the user
and server, communication latency, and algorithm
deployment variety, as shown in Table 1.

cognItIve engIne
By using the software-defined networking (SDN)
technology and AI algorithm, we can deploy a
cognitive engine in three layers of a network
framework. Cognitive engines can be divided into
two types: the resource cognitive engine and the
data cognitive engine, as shown in Fig. 1. The
data cognitive engine first processes real-time
data flow in the network environment, and intro-
duces data analysis in edge cloud and remote
cloud. Then it carries out task logic intelligent-
ly, realizes cognition of task data and resource
data through all kinds of cognitive computing
methods, allocates dynamic guidance resources,
and provides cognition services. Through SDN,
network functions virtualization (NFV), self-or-
ganizing networks (SONs), and network slicing

FIGURE 1. System architecture.

Local device layer

User end 1 User end 2 User end n

Edge node 1 Edge node 2 Edge node n

Edge cloud layer

Remote cloud layer
Cognitive engines

Cloud-Edge collaborative system

Data cognitive engine

Task
processing

Return
result

P
ersonalized

healthcare service

User

Intelligent Task Offloading

Task
offloading

Multi-modal emotion
data collection

 Emotion detection as an example

P
ersonalized offloading strategy

Resource cognitive
engine

IEEE Network • September/October 201984

technology, the resource cognitive engine can
transfer comprehensive resource data to the data
cognitive engine, to realize the perception of the
computing resources, communication resources,
and network resources (e.g., network type, com-
munication quality). Meanwhile, it receives the
analysis result from the data cognitive engine and
guides the real-time dynamic optimization and
allocation of resources.

methods of ItAskoffLoAdIng
In this section, we give the method of iTaskOff-
loading, which includes “what to compute,” “how
to compute,” and “where to compute.”

whAt to compute
The iTaskOffloading scheme is for the intelli-
gent application; thus, in order to illustrate what
to compute, we give emotion detection as an
example, as shown in Fig. 2. The computing data
include speech emotion data (D1), facial emotion
data (D2), physiological data (D3), and so on.
Specifically, the emotion detection needs input of
the personal time series data (e.g., speech, facial,
and physiological data) and uses a deep learning
algorithm to detect the user’s emotion. In theory,
using multi-dimensional data and large amounts
of historical data can guarantee a high-preci-
sion emotion recognition rate. Thus, the emo-
tion detection involves the multi-level computing
issues including computing amount and its com-
plexity at each level. Analyzing this kind of task in
real time, some data (e.g., physiological data) can
use a simple AI algorithm, while other data (e.g.,
facial data) can use a complex AI algorithm. Thus,
we can divide the tasks requiring to be offload-
ed into two categories: light task load and heavy
task load. Light task load means that the amount
of data to be offloaded is small, the required AI
algorithm is simple, and the number of concur-
rent user requirements is lower. Correspondingly,
heavy task load means that the amount of data to
be offloaded is large, the required AI algorithm
is complex, and the number of concurrent user
requirements is high. Therefore, compared to a
traditional task, intelligent task application is more
compute-intensive and needs optimal task offload-
ing.

how to compute
Given the basic scope of a computing task, the
next step is to consider how to do the compu-
tation. Regarding the question of “how to com-
pute,” we propose two concepts, coarse-grained
task offloading and fine-grained task offloading,
to increase the computational flexibility of the
iTaskOffloading method.

Coarse-Grained Task Offloading: As shown in
Fig. 2, depending on whether the task is separable,

we can divide the methods of task offloading into
coarse-grained task offloading and fine-grained
task offloading. When the task is inseparable, it
corresponds to coarse-grained. It is worth noting
that an inseparable task means that for a specif-
ic task, it can only be executed in either a local
device, edge cloud, or remote cloud, but cannot
be divided into different subtasks to be executed
in different locations. For intelligent applications,
the corresponding tasks can generally be divided
into different subtasks. Therefore, it is necessary
to design fine-grained task offloading. The specific
introduction is given as follows.

Fine-Grained Task Offloading: The intelligent
application task is a complex task that can be
divided into multiple small subtasks. For example,
a speech emotion processing task can be divided
into three subtasks: voiceprint recognition, speech
recognition, and speech emotion detection. Since
each subtask has its own characteristics, it requires
different communication, computing, and storage
resources. Based on the divisibility of tasks, these
subtasks can be suitable for flexible computing
by local device, edge cloud, and remote cloud.
Under this condition, the task can implement fine-
grained task offloading.

Specifically, we can divide the intelligent appli-
cation task into multiple different subtasks, each
of which can be computed at a different location.
For instance, voiceprint recognition can be com-
puted on the edge cloud, while speech recog-
nition can be done on the remote cloud. Task
offloading is based on the characteristics of the
computing requirement of the subtasks and the
current computing resources of edge cloud and
remote cloud. In this way, computing resources
can be fully utilized, ensuring recognition accu-
racy, and tasks can be offloaded distributively to
shorten the time delay.

Furthermore, considering the ultra-low latency
and ultra-high reliability requirements of intelligent
application users, we use cognitive engine and
SDN technology to provide personalized task off-
loading. Specifically, when mobile devices offload
the tasks, it sends control instructions to the edge
cloud. The feedback accuracy and task duration
of different computing methods deployed on the
edge cloud and remote cloud are different. Since
the duration of task computing on a cloud is long,
we can first satisfy the basic needs of users by
low-resolution computing and use the edge cloud
to calculate and feed back the rough recognition
results to satisfy users’ need for a fast response in
real time. When the results of cloud computing
are complete, we add high-resolution computing
as a follow-up more detailed and precise analysis.
Thus, fine-grained computing can fully meet the
characteristics of a user’s personalized computing
tasks.

TABLE 1. Comparison of local, edge, and cloud computing.

Computing type Computing capacity Storage capacity
Distance between
the user and server

Communication
latency

Algorithm
deployment variety

Local computing Low Low No hop Low Low

Edge computing Medium Medium One hop Medium Medium

Cloud computing High High Multiple hops High High

IEEE Network • September/October 2019 85

where to compute
The selection of where to offload a computing task
(i.e., local device, edge cloud, or remote cloud) is
always based on the individual optimization objec-
tives of users, as shown in Fig. 2. Specifically, com-
pared to traditional task offloading optimization
objectives, the intelligent application optimization
objectives include reducing the task duration and
energy consumption and improving recognition
accuracy. It should be noted that for fine-grained
task offloading, the optimization objectives of every
subtask may be different. That is because some sub-
tasks focus more on task duration, but some sub-
tasks focus on energy consumption. Furthermore,
where to offload the subtasks depends on the opti-
mization objectives of the whole task. Therefore, we
need to perform a joint optimization of multiple sub-
tasks and one whole task, and ultimately determine
where the subtasks should be processed.

Considering different computing and stor-
age capabilities of local device, edge cloud, and
remote cloud, different computing AI algorithms
are deployed and adopted at different locations.
Furthermore, the heterogeneous edge cloud with
different computing and storage capability, which
are in the edge cloud layer, can be connected to
each other and offload tasks distributively so that
task duration can be reduced.

testbed And experIment resuLt
In this section, we build a testbed for emotion
detection to evaluate the iTaskOffloading scheme.

system testbed
Emotion Detection Task: In this article, we regard
emotion detection as an intelligent application to
verify the proposed iTaskOffloading scheme, as
shown in Fig. 3. To be specific, for the complex

FIGURE 2. iTaskOffloading methods: What to compute? How to compute? Where to compute?

Intelligent applications

Emotion detection Autonomous vehicle

Smart factoryVR/AR

Network resource

Edge cloud Remote cloud

Data cognitive engine

NFV SDN

SON Network
slicing

Resource cognitive engine

Cloud
computing

Cognitive engines

Machine
learning

Data
mining

Deep
learning

What to compute?

How to compute?

Where to compute?

Symbol A case in emotion detect ion

D1
D2
D3
...

Speech emotion data
Facial emotion data
Physiological data

...

Task duration

En
er

gy

co
ns

um
pt

io
n

Local device

Coarse-grained
task offloading

Fine-grained
task offloading

FIGURE 3. System testbed based on emotion detection.

IEEE Network • September/October 201986

task of users’ emotion detection, we utilize two
data models that include facial expression and
speech to detect a user’s emotion. In order to
accomplish fine-grained task offloading, we divide
the task of facial expression recognition into three
subtasks: face detection, facial identification, and
facial emotion detection. Specifically, first we pre-
process the data to perform face detection and
remove background and irrelevant regions. Then
the user’s face needs to be identified, and other
irrelevant faces need to be removed. Finally, an
emotion detection algorithm is used to recognize
facial expression.

Similarly, we divide the task of speech emo-
tion recognition into three subtasks: voiceprint
recognition, speech recognition, and speech emo-
tion detection. Specifically, first we preprocess the
data to perform voiceprint recognition and obtain
the user’s voice required to detect in multi-user
conditions. Then the voice of the user is analyzed,
and finally speech emotion will be identified by
employing an emotion detection algorithm. After
completing facial expression and speech emotion
recognition, we will feed back the recognition
results to the user.

In the experiment, in order to achieve multi-lay-
er deployment of the emotion detection algo-
rithm, for facial expression recognition we use
two different sizes of a deep neural network (in
this article, we use VGG16 [13]) algorithm to per-
form emotion recognition, where the size of com-
plex model is 126 MB and the simple model is 4
MB. For speech emotion recognition, we adopt
two different sizes of a deep neural network (in
this article, we use AlexNet [14]) algorithm to
perform speech recognition, where the size of
the complex model is 24.9 MB while the simple
model is 4.6 MB.

Hardware Platform: Figure 3 shows the hard-
ware platform of the testbed. From the figure,
we can see that the hardware platform is com-
posed of three parts: AIWAC robot [15], local
server (i.e., edge cloud), and GPU analytics server
(remote cloud). Specifically, the AIWAC robot
collects complex multi-modal emotional data. Its
system is an Android 4.4 operating system with
limited computing and storage capacities. Local
service whose operating system is CenOS 7 has
medium storage and computing resource. We

use a GPU analytics server whose operating sys-
tem is Ubuntu 16.04 as the remote cloud, which
is equipped with strong computing and storage
capabilities. Table 2 lists the specific hardware
parameters of local device, edge cloud, and
remote cloud. In the experiment, we set the
upper bound of the number of concurrent tasks
that can be handled by local device to 5, edge
cloud to 60, and remote cloud to 500.

experImentAL resuLts
Based on the above experimental platform, aimed
at the emotion detection task, we perform exper-
iments for the proposed fine-grained task offload-
ing and coarse-grained task offloading, and make
a comparison between iTaskOffloading and tra-
ditional cloud computing. In the experiment, we
use task duration as the evaluation index. Further-
more, we deploy a simple speech and facial rec-
ognition model on local device and edge cloud,
and a complex speech and facial recognition
model on remote cloud. The result is shown in
Fig. 4.

From Fig. 4a, we can see that in the case of a
light task load, the iTaskOffloading scheme has
better performance than cloud computing, and
the fine-grained task offloading surpasses the
coarse-grained task offloading by nearly 10 per-
cent. This is because iTaskOffloading can flexi-
bly offload tasks to edge cloud or remote cloud
according to the types of the tasks, while cloud
computing offloads all tasks to the cloud, result-
ing in large transmission delay. Furthermore,
fine-grained task offloading can divide the task
to be processed into multiple subtasks, and flexi-
bly deploy the subtasks in the local device, edge
cloud, and remote cloud according to the char-
acteristics of the subtasks, which reduces the
task duration. When the task load increases to
the heavy level in Fig. 4b, which is the most fre-
quent situation in reality, the performance of the
fine-grained task offloading scheme is significantly
better (by 30 percent) than that of the cloud com-
puting. This can be explained by the fact that as
the amount of tasks increases, fine-grained task
offloading is more intelligent and personalized in
task processing, thus reducing the task duration.
Therefore, iTaskOffloading shows relatively good
performance.

TABLE 2. Configuration of the testbed.

Computing type Platform Operating system Hardware

Local computing Robot Android 4.4

CPU 4-core,1.2 GHz

DDR memory 1 GB DDR3 SDRAM

NAND flash 32G NAND Flash

Edge computing Local server CentOS 7

CPU 8-core, 3.4 GHz

DDR memory 16 GB DDR3 SDRAM

Hard disk 1050G NAND Flash

Cloud computing GPU analytics server Ubuntu 16.04

GPU NVIDIA GTX1080ti*2

DDR memory 32 GB DDR3 SDRAM

CPU 6-core, 3.5 GHz

IEEE Network • September/October 2019 87

open reseArch Issues
mAnAgement of heterogeneous resource

Although a multi-layered network can provide
adaptable and adjustable network resources, it
also faces the problem of managing the hetero-
geneous resources (i.e., communication, storage,
and computing resource). This is because there
are numerous devices in the network, such as
mobile phones, personal computers, and wear-
able devices, and these devices can be distrib-
uted at different locations in the network with
constraints of ultra-low latency and ultra-high reli-
ability. Thus, we need to consider how to effec-
tively and automatically manage different types of
resources. Furthermore, within the edge network,
resource scheduling and task handover also need
to be considered. Moreover, the remote cloud
and edge cloud need to balance communication,
storage, and computation resources.

InteLLIgent protocoL for mobILIty mAnAgement
More intelligent protocols are necessary for intel-
ligent application task offloading. In the case of
multiple users, regarding users’ task complexity,
delay sensitivity, and other factors, different users
should be assigned different priorities. Network
resources can be allocated based on the priority
to improve the overall quality of experience. Fur-
thermore, considering user mobility, incomplete
acquisition of the information on user trajecto-
ry may lead to the inaccurate prediction of user
mobility, resulting in higher latency or even failure
of task offloading. With the increasing number of
mobile devices, one of the potential solutions is
to use statistical information on user trajectory to
selectively pre-fetch possible data and establish
an intelligent protocol based on mobility trajec-
tory prediction. Finally, task offloading may cause
high latency or task failure due to unstable net-
work connections and constant change of net-
work access points. Therefore, more intelligent
protocols are required to guarantee smooth and
successful resource allocation.

securIty And prIvAcy
Since local devices have limited computing capac-
ity and power, they often need to offload tasks to
the edge cloud or remote cloud for further pro-
cessing. In this process, the problem of privacy
leakage and security challenges is urgent and seri-
ous. There are some problems need to be solved,
for example, how to protect the task on device so
that unauthorized people cannot access it, how to
ensure that a task is securely and reliably shared
between local devices and edge cloud or remote
cloud, and how to securely store the task data on
edge cloud and remote clouds.

concLusIon
In this article, we first introduce the architecture
of iTaskOffloading which includes local device,
edge cloud, remote cloud, and cognitive engine.
Then we discuss the method of iTaskOffloding,
which includes coarse-grained task offloading
and fine-grained task offloading. After that, tak-
ing emotion detection as an example, we build
a real testbed to verify the efficiency of the AITO
scheme. Finally, we list some open research
issues, which include management of heteroge-
neous resource, intelligent protocol for mobility
management, security, and privacy.

AcknowLedgments
This work is supported by the National Key R&D
Program of China (2017YFE0123600). The work
by Dr. Yixue Hao was partially supported by the
National Natural Science Foundation of China
(Grant No. 61802138), and the China Postdoc-
toral Science Foundation (No. 2018M632859,
No. 2019T120657). The work by Dr. Tao Chen
was partially funded by the EU Horizon 2020
programme under grant agreements no. 814956
(5G-DRIVE).

references
[1] Y. Wang et al., “Traffic and Computation Co-Offloading with

Reinforcement Learning in Fog Computing for Industrial
Applications,” IEEE Trans. Industrial Informatics, vol. 15, no.
2, 2019, pp. 976–86.

FIGURE 4. Comparison of task duration against different numbers of concurrent task requests with: a) light task load; b) heavy task load.

150 160 170 180 190 200
Number of concurrent task requests

0

0.5

1

1.5

2

2.5

3

3.5

4

Ta
sk

 d
ur

at
io

n
(m

s)

104

Cloud computing
Coarse-grained task offloading
Fine-grained task offloading

50 60 70 80 90 100
Number of concurrent task requests

500

1000

1500

2000

2500

3000
Ta

sk
 d

ur
at

io
n

(m
s)

Cloud computing
Coarse-grained task offloading
Fine-grained task offloading

a) b)

IEEE Network • September/October 201988

[2] H. Shi and Y. Li, “Discovering Periodic Patterns for Large
Scale Mobile Traffic Data: Method and Applications,” IEEE
Trans. Mobile Computing, vol. 17, no. 10, 2018, pp. 2266–
78.

[3] M. Chen et al., “Opportunistic Task Scheduling over Co-Lo-
cated Clouds in Mobile Environment,” IEEE Trans. Service
Computing, vol. 11, no. 3, 2018, pp. 549–61.

[4] H. Li, K, Ota, and M. Dong, “Learning IoT in Edge: Deep
Learning for the Internet of Things with Edge Computing,”
IEEE Network, vol. 32, no.1, 2018, pp. 96–101.

[5] M. Chen et al., “A Dynamic Service-Migration Mechanism in
Edge Cognitive Computing,” ACM Trans. Internet Technolo-
gy, vol. 19, no. 2, 2019, Article 30.

[6] H. Huang, and S. Guo, “Proactive Failure Recovery for NFV
in Distributed Edge Computing,” IEEE Commun. Mag., vol.
57, no. 5, May 2019, pp. 131–37.

[7] R. Shea et al., “Cloud Gaming: Architecture and Perfor-
mance” IEEE Network, vol. 27, no. 4, July/Aug. 2013, pp.
16–21.

[8] M. Chen and Y. Hao, “Task Offloading for Mobile Edge
Computing in Software Defined Ultra-Dense Network,” IEEE
JSAC, vol. 36, no. 3, Mar. 2018, pp. 587–97.

[9] M. Chen et al., “Cognitive Information Measurements: A
New Perspective,“ Info. Sciences, vol. 505, 2019, pp. 487–
97.

[10] Y. Liu et al., “On the Resource Trade-off of Flow Update in
Software-Defined Networks,” IEEE Commun. Mag., vol. 54,
no. 6, June 2016, pp. 88–93.

[11] Y. Liu, M. Lee, and Y. Zheng, “Adaptive Multi-Resource
Allocation for Cloudlet-Based Mobile Cloud Computing
System,” IEEE Trans. Mobile Computing, vol. 15, no. 8, 2016,
pp. 2398–2410.

[12] D. Xu et al., “A Survey of Opportunistic Offloading,” IEEE
Commun. Surveys & Tutorials, vol. 20, no. 3, 2018, pp.
2198–2236.

[13] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” arXiv preprint
arXiv: 1409.1556, 2014.

[14] S. Zhang et al., “Learning Affective Features with a Hybrid
Deep Model for Audio-Visual Emotion Recognition,” IEEE
Trans. Circuits and Systems for Video Technology, vol. 28,
no. 10, 2018, pp. 3030–43.

[15] M. Chen et al., “AIWAC: Affective Interaction Through
Wearable Computing and Cloud Technology,” IEEE Wireless
Commun., vol. 22, no. 1, Feb, 2015, pp. 20–27.

 bIogrAphIes
Yixue Hao (yixuehao@hust.edu.cn) received his B.E. degree
from Henan University, China, and his Ph.D degree in computer
science from Huazhong University of Science and Technology
(HUST), China, 2017. He is currently working as a postdoctoral
scholar in the School of Computer Science and Technology
at HUST. His research includes 5G networks, the Internet of
Things, and mobile edge computing.

YingYing Jiang received her B.E. degree from the School of
Information and Safety Engineering, Zhongnan University of
Economics and Law (ZUEL), China, in 2017. Currently, she is
a Ph.D candidate at the Embedded and Pervasive Computing
(EPIC) Lab in the School of Computer Science and Technology,
HUST. Her research includes healthcare big data, cognitive
learning, and so on.

Tao CHen [SM’09] (tao.chen@vtt.fi) received his B.E. degree in
telecommunications engineering from Beijing University of Posts
and Telecommunications, China, in 1996, and his Ph.D. degree
from the University of Trento, Italy, in 2007. He is currently a
senior researcher with the VTT Technical Research Centre of
Finland. He is the Project Coordinator of the EU H2020 5G PPP
COHERENT Project. His current research interests include soft-
ware-defined networking for 5G mobile networks, dynamic spec-
trum access, social-aware mobile networks, and energy efficiency
and resource management in heterogeneous wireless networks.

Donggang Cao (caodg@pku.edu.cn) is a research professor
at the Software Institute, School of Electronics Engineering and
Computer Science, Peking University, Beijing. He received his
Ph.D. degree in computer software and theory from Peking Uni-
versity in 2004. His research interests include system software,
parallel and distributed computing, cloud computing, and so on.

Min CHen [SM’09] (minchen2012@hust.edu.cn) has been a full
professor in the School of Computer Science and Technology at
HUST since February 2012. He is Chair of the IEEE Computer
Society STC on Big Data. His Google Scholars Citations reached
17,600+ with an h-index of 66. He received the IEEE Communi-
cations Society Fred W. Ellersick Prize in 2017 and the IEEE Jack
Neubauer Memorial Award in 2019. His research focuses on
cyber physical systems, IoT sensing, 5G networks, SDN, health-
care big data, and so on.

