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AbstrAct
With the development of technologies such 

as the Internet of Things and artificial intelligence, 
mobile applications are becoming more and 
more intelligent. Compared to traditional appli-
cations realized by mobile cloud computing tech-
nology, these novel applications have a higher 
requirement for a task offloading scheme. How-
ever, the traditional task offloading schemes are 
hard pressed to meet latency and personalization 
requirements of these new applications. For intelli-
gent application, how to realize personalized and 
fine-grained task offloading is still a challenging 
problem. Therefore, we propose a scheme called 
intelligent task offloading (iTaskOffloading) for a 
cloud-edge collaborative system, which can pro-
vide personalized task offloading. To be specific, 
we first propose the architecture of iTaskOffload-
ing which includes the local device layer, edge 
cloud layer, remote cloud layer, and cognitive 
engine. Then we analyze the method of iTaskOff-
loading, which contains coarse-grained computing 
and fine-grained computing. Finally, we build a 
testbed to evaluate the proposed iTaskOffloading 
scheme using a typical intelligent application of 
emotion detection. The experimental results show 
that compared to the traditional cloud computing 
scheme, iTaskOffloading has less task duration.

IntroductIon
Nowadays, with the development of technolo-
gies such as the Industrial Internet of Things 
(IIoT) [1] and artificial intelligence (AI), current 
mobile applications (e.g., virtual reality and emo-
tion detection) are more and more intelligent. 
These intelligent applications need not only large-
scale and personalized data but also support for 
AI algorithms. Since mobile devices suffer from 
limited battery and computing capacity, it is nec-
essary to offload these intelligent applications to 
the cloud [2]. However, when a large number of 
devices are connected to the cloud, large latency 
may be incurred because the cloud is far from 
users [3, 4].

In order to solve these problems, both aca-
demia and industry propose edge computing [5, 
6]. Compared to cloud computing [7], edge com-
puting satisfies the needs of low latency of users’ 
tasks by deploying servers on the edge. At present, 
most of the interesting studies on edge computing 
focus on solving the problem of energy efficien-
cy from the perspective of communication [8, 9]. 

However, they do not consider how to solve the 
task offloading problem of intelligent application 
with personalized data and an AI algorithm.

Aiming at the problem of task offloading, each 
intelligent application can act as an independent 
task [10]. By taking the personalized data of users 
into consideration, the processing of each task 
can be different [11]. Correspondingly, the com-
puting methods of the tasks in various network 
conditions need to be differentiated. Thus, for the 
intelligent application, we need to consider using 
intelligent technology to decide “What” is need-
ed and “How” to compute the task. In addition, 
to achieve efficient task execution, we need to 
choose a computing location among local device, 
edge cloud, and remote cloud (i.e., “where to 
compute”). However, existing works do not con-
sider the problem of this intelligent application 
task offloading. Therefore, for intelligent applica-
tion, how to design a personalized task offloading 
strategy is still a challenging problem.

In this article, in order to solve the problem 
of task offloading in intelligent application, we 
propose an intelligent task offloading (iTaskOff-
loading) scheme for a cloud-edge collaborative 
system. To be specific, we first combine the cog-
nitive engine with the traditional cloud-edge col-
laborative system, and propose the architecture 
of iTaskOffloading. This architecture can not only 
recognize the resources from local device, edge 
cloud, and remote cloud, but also understand the 
task of intelligent application. Then, based on the 
above proposed architecture, we give the meth-
od of iTaskOffloading and design a scheme of 
fine-grained task offloading for the separability of 
intelligent application tasks to enable personalized 
task offloading. Finally, we build a real testbed and 
demonstrate the performance of iTaskOffloading.

In summary, the main contributions of this arti-
cle include:
• Based on the cloud-edge collaborative sys-

tem, we propose the iTaskOffloading archi-
tecture, which includes the local device 
layer, edge cloud layer, remote cloud layer, 
and cognitive engine. Using the cognitive 
engine, we can realize the cognition of 
resources and the intelligent application task.

•  We give the method of iTaskOffloading, 
which includes what to compute, how to 
compute, and where to compute the task. 
Furthermore, in the scheme, we propose the 
fine-grained task offloading, which can real-
ize personalized task offloading.
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•  Based on the intelligent application of emo-
tion detection, a real testbed is built to veri-
fy iTaskOffloading. The experimental results 
show that the iTaskOffloading scheme has 
less latency than traditional cloud comput-
ing.
The remainder of this article is organized as fol-

lows. In the next section, we propose the system 
architecture. Following that, an offloading strategy 
is explained. The testbed and related experiments 
are then presented. Further research topics are 
then listed. Finally, our conclusion is given.

system ArchItecture
In this section, we give the system architecture, 
including the local device layer, edge cloud layer, 
remote cloud layer, and cognitive engine.

system overvIew
The system architecture includes the local device 
layer, edge cloud layer, remote cloud layer, and 
cognitive engine, as shown in Fig. 1. In order to 
illustrate the system overview, we use emotion 
detection as an example. First, the user collects 
multi-modal emotion data through wearable devic-
es. Then, after getting the emotion data, the user 
needs to offload the computing task. Consider the 
personalization of emotion data. When different 
users have various requirements on the latency of 
emotion detection, the emotion computing task 
should be offloaded to different locations (i.e., 
local device, edge cloud, and remote cloud) for 
further processing. The cognitive engine deter-
mines the personalized offloading strategy. Finally, 
after the emotion task is processed, the result will 
be fed back to the user, and the user will obtain a 
personalized healthcare service.

LocAL devIce LAyer
The local layer includes local devices such as 
smartphone, robot, and wearable devices, which 
can collect data of intelligent applications. Fur-
thermore, due to the relatively low computation 
capability and storage capability of local devices, 
when a user has excessive requests or a comput-
ing task of great complexity, it is not suitable to 
process the data on local devices. However, local 
devices are the closest device to the user, which 
can produce low communication latency, so it is 
suitable for processing simple tasks that are very 
sensitive to latency [12]. Furthermore, since the 
computing capacity of a local device is limited, 
the AI algorithm deployed in the local device 
layer is simple.

edge cLoud LAyer
The edge cloud layer, as a middle layer, can 
process a computing task. Edge cloud is com-
posed of numerous edge services with comput-
ing and storage capability. The edge server can 
be deployed in a gateway, router, and so on. 
The computing and storage ability of edge cloud 
is weaker than that of remote cloud. However, 
the communication latency is much lower than 
that of remote cloud. Generally speaking, mobile 
devices are connected to edge cloud through a 
single-hop wireless network. Thus, the communi-
cation latency is decreased greatly to satisfy the 
demand of a computing task with latency sensi-
tivity. The computing ability of edge cloud is bet-

ter than that of a local device. Thus, we deploy a 
complex AI algorithm on the edge node to pro-
cess the task.

remote cLoud LAyer
A remote cloud represents a large data center 
that is distanct from the user. It can deploy a 
high-performance AI algorithm and stores a large 
amount of user historical analysis data. Thus, it 
can provide highly precise computing and be 
used for computation-intensive tasks. Taking emo-
tion detection as an example, emotion data is 
private with the heterogeneous features. Thus, it 
records a behavioral habit of a user and maps it 
for further computing rules to achieve more accu-
rate prediction and better user service using the 
user features or behavior cognition. However, the 
shortcoming of cloud computing is high latency 
due to the far distance between the cloud data 
center and the user. Furthermore, we give the 
comparison of local computing, edge computing, 
and cloud computing from the computing capac-
ity, storage capacity, distance between the user 
and server, communication latency, and algorithm 
deployment variety, as shown in Table 1.

cognItIve engIne
By using the software-defined networking (SDN) 
technology and AI algorithm, we can deploy a 
cognitive engine in three layers of a network 
framework. Cognitive engines can be divided into 
two types: the resource cognitive engine and the 
data cognitive engine, as shown in Fig. 1. The 
data cognitive engine first processes real-time 
data flow in the network environment, and intro-
duces data analysis in edge cloud and remote 
cloud. Then it carries out task logic intelligent-
ly, realizes cognition of task data and resource 
data through all kinds of cognitive computing 
methods, allocates dynamic guidance resources, 
and provides cognition services. Through SDN, 
network functions virtualization (NFV), self-or-
ganizing networks (SONs), and network slicing 

FIGURE 1. System architecture.
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technology, the resource cognitive engine can 
transfer comprehensive resource data to the data 
cognitive engine, to realize the perception of the 
computing resources, communication resources, 
and network resources (e.g., network type, com-
munication quality). Meanwhile, it receives the 
analysis result from the data cognitive engine and 
guides the real-time dynamic optimization and 
allocation of resources.

methods of ItAskoffLoAdIng
In this section, we give the method of iTaskOff-
loading, which includes “what to compute,” “how 
to compute,” and “where to compute.”

whAt to compute
The iTaskOffloading scheme is for the intelli-
gent application; thus, in order to illustrate what 
to compute, we give emotion detection as an 
example, as shown in Fig. 2. The computing data 
include speech emotion data (D1), facial emotion 
data (D2), physiological data (D3), and so on. 
Specifically, the emotion detection needs input of 
the personal time series data (e.g., speech, facial, 
and physiological data) and uses a deep learning 
algorithm to detect the user’s emotion. In theory, 
using multi-dimensional data and large amounts 
of historical data can guarantee a high-preci-
sion emotion recognition rate. Thus, the emo-
tion detection involves the multi-level computing 
issues including computing amount and its com-
plexity at each level. Analyzing this kind of task in 
real time, some data (e.g., physiological data) can 
use a simple AI algorithm, while other data (e.g., 
facial data) can use a complex AI algorithm. Thus, 
we can divide the tasks requiring to be offload-
ed into two categories: light task load and heavy 
task load. Light task load means that the amount 
of data to be offloaded is small, the required AI 
algorithm is simple, and the number of concur-
rent user requirements is lower. Correspondingly, 
heavy task load means that the amount of data to 
be offloaded is large, the required AI algorithm 
is complex, and the number of concurrent user 
requirements is high. Therefore, compared to a 
traditional task, intelligent task application is more 
compute-intensive and needs optimal task offload-
ing.

how to compute
Given the basic scope of a computing task, the 
next step is to consider how to do the compu-
tation. Regarding the question of “how to com-
pute,” we propose two concepts, coarse-grained 
task offloading and fine-grained task offloading, 
to increase the computational flexibility of the 
iTaskOffloading method.

Coarse-Grained Task Offloading: As shown in 
Fig. 2, depending on whether the task is separable, 

we can divide the methods of task offloading into 
coarse-grained task offloading and fine-grained 
task offloading. When the task is inseparable, it 
corresponds to coarse-grained. It is worth noting 
that an inseparable task means that for a specif-
ic task, it can only be executed in either a local 
device, edge cloud, or remote cloud, but cannot 
be divided into different subtasks to be executed 
in different locations. For intelligent applications, 
the corresponding tasks can generally be divided 
into different subtasks. Therefore, it is necessary 
to design fine-grained task offloading. The specific 
introduction is given as follows.

Fine-Grained Task Offloading: The intelligent 
application task is a complex task that can be 
divided into multiple small subtasks. For example, 
a speech emotion processing task can be divided 
into three subtasks: voiceprint recognition, speech 
recognition, and speech emotion detection. Since 
each subtask has its own characteristics, it requires 
different communication, computing, and storage 
resources. Based on the divisibility of tasks, these 
subtasks can be suitable for flexible computing 
by local device, edge cloud, and remote cloud. 
Under this condition, the task can implement fine-
grained task offloading.

Specifically, we can divide the intelligent appli-
cation task into multiple different subtasks, each 
of which can be computed at a different location. 
For instance, voiceprint recognition can be com-
puted on the edge cloud, while speech recog-
nition can be done on the remote cloud. Task 
offloading is based on the characteristics of the 
computing requirement of the subtasks and the 
current computing resources of edge cloud and 
remote cloud. In this way, computing resources 
can be fully utilized, ensuring recognition accu-
racy, and tasks can be offloaded distributively to 
shorten the time delay.

Furthermore, considering the ultra-low latency 
and ultra-high reliability requirements of intelligent 
application users, we use cognitive engine and 
SDN technology to provide personalized task off-
loading. Specifically, when mobile devices offload 
the tasks, it sends control instructions to the edge 
cloud. The feedback accuracy and task duration 
of different computing methods deployed on the 
edge cloud and remote cloud are different. Since 
the duration of task computing on a cloud is long, 
we can first satisfy the basic needs of users by 
low-resolution computing and use the edge cloud 
to calculate and feed back the rough recognition 
results to satisfy users’ need for a fast response in 
real time. When the results of cloud computing 
are complete, we add high-resolution computing 
as a follow-up more detailed and precise analysis. 
Thus, fine-grained computing can fully meet the 
characteristics of a user’s personalized computing 
tasks.

TABLE 1. Comparison of local, edge, and cloud computing.

Computing type Computing capacity Storage capacity
Distance between 
the user and server

Communication 
latency

Algorithm 
deployment variety

Local computing Low Low No hop Low Low

Edge computing Medium Medium One hop Medium Medium

Cloud computing High High Multiple hops High High
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where to compute
The selection of where to offload a computing task 
(i.e., local device, edge cloud, or remote cloud) is 
always based on the individual optimization objec-
tives of users, as shown in Fig. 2. Specifically, com-
pared to traditional task offloading optimization 
objectives, the intelligent application optimization 
objectives include reducing the task duration and 
energy consumption and improving recognition 
accuracy. It should be noted that for fine-grained 
task offloading, the optimization objectives of every 
subtask may be different. That is because some sub-
tasks focus more on task duration, but some sub-
tasks focus on energy consumption. Furthermore, 
where to offload the subtasks depends on the opti-
mization objectives of the whole task. Therefore, we 
need to perform a joint optimization of multiple sub-
tasks and one whole task, and ultimately determine 
where the subtasks should be processed.

Considering different computing and stor-
age capabilities of local device, edge cloud, and 
remote cloud, different computing AI algorithms 
are deployed and adopted at different locations. 
Furthermore, the heterogeneous edge cloud with 
different computing and storage capability, which 
are in the edge cloud layer, can be connected to 
each other and offload tasks distributively so that 
task duration can be reduced.

testbed And experIment resuLt
In this section, we build a testbed for emotion 
detection to evaluate the iTaskOffloading scheme.

system testbed
Emotion Detection Task: In this article, we regard 
emotion detection as an intelligent application to 
verify the proposed iTaskOffloading scheme, as 
shown in Fig. 3. To be specific, for the complex 

FIGURE 2. iTaskOffloading methods: What to compute? How to compute? Where to compute?
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task of users’ emotion detection, we utilize two 
data models that include facial expression and 
speech to detect a user’s emotion. In order to 
accomplish fine-grained task offloading, we divide 
the task of facial expression recognition into three 
subtasks: face detection, facial identification, and 
facial emotion detection. Specifically, first we pre-
process the data to perform face detection and 
remove background and irrelevant regions. Then 
the user’s face needs to be identified, and other 
irrelevant faces need to be removed. Finally, an 
emotion detection algorithm is used to recognize 
facial expression.

Similarly, we divide the task of speech emo-
tion recognition into three subtasks: voiceprint 
recognition, speech recognition, and speech emo-
tion detection. Specifically, first we preprocess the 
data to perform voiceprint recognition and obtain 
the user’s voice required to detect in multi-user 
conditions. Then the voice of the user is analyzed, 
and finally speech emotion will be identified by 
employing an emotion detection algorithm. After 
completing facial expression and speech emotion 
recognition, we will feed back the recognition 
results to the user.

In the experiment, in order to achieve multi-lay-
er deployment of the emotion detection algo-
rithm, for facial expression recognition we use 
two different sizes of a deep neural network (in 
this article, we use VGG16 [13]) algorithm to per-
form emotion recognition, where the size of com-
plex model is 126 MB and the simple model is 4 
MB. For speech emotion recognition, we adopt 
two different sizes of a deep neural network (in 
this article, we use AlexNet [14]) algorithm to 
perform speech recognition, where the size of 
the complex model is 24.9 MB while the simple 
model is 4.6 MB.

Hardware Platform: Figure 3 shows the hard-
ware platform of the testbed. From the figure, 
we can see that the hardware platform is com-
posed of three parts: AIWAC robot [15], local 
server (i.e., edge cloud), and GPU analytics server 
(remote cloud). Specifically, the AIWAC robot 
collects complex multi-modal emotional data. Its 
system is an Android 4.4 operating system with 
limited computing and storage capacities. Local 
service whose operating system is CenOS 7 has 
medium storage and computing resource. We 

use a GPU analytics server whose operating sys-
tem is Ubuntu 16.04 as the remote cloud, which 
is equipped with strong computing and storage 
capabilities. Table 2 lists the specific hardware 
parameters of local device, edge cloud, and 
remote cloud. In the experiment, we set the 
upper bound of the number of concurrent tasks 
that can be handled by local device to 5, edge 
cloud to 60, and remote cloud to 500.

experImentAL resuLts
Based on the above experimental platform, aimed 
at the emotion detection task, we perform exper-
iments for the proposed fine-grained task offload-
ing and coarse-grained task offloading, and make 
a comparison between iTaskOffloading and tra-
ditional cloud computing. In the experiment, we 
use task duration as the evaluation index. Further-
more, we deploy a simple speech and facial rec-
ognition model on local device and edge cloud, 
and a complex speech and facial recognition 
model on remote cloud. The result is shown in 
Fig. 4.

From Fig. 4a, we can see that in the case of a 
light task load, the iTaskOffloading scheme has 
better performance than cloud computing, and 
the fine-grained task offloading surpasses the 
coarse-grained task offloading by nearly 10 per-
cent. This is because iTaskOffloading can flexi-
bly offload tasks to edge cloud or remote cloud 
according to the types of the tasks, while cloud 
computing offloads all tasks to the cloud, result-
ing in large transmission delay. Furthermore, 
fine-grained task offloading can divide the task 
to be processed into multiple subtasks, and flexi-
bly deploy the subtasks in the local device, edge 
cloud, and remote cloud according to the char-
acteristics of the subtasks, which reduces the 
task duration. When the task load increases to 
the heavy level in Fig. 4b, which is the most fre-
quent situation in reality, the performance of the 
fine-grained task offloading scheme is significantly 
better (by 30 percent) than that of the cloud com-
puting. This can be explained by the fact that as 
the amount of tasks increases, fine-grained task 
offloading is more intelligent and personalized in 
task processing, thus reducing the task duration. 
Therefore, iTaskOffloading shows relatively good 
performance.

TABLE 2. Configuration of the testbed.

Computing type Platform Operating system Hardware

Local computing Robot Android 4.4

CPU 4-core,1.2 GHz

DDR memory 1 GB DDR3 SDRAM

NAND flash 32G NAND Flash

Edge computing Local server CentOS 7

CPU  8-core, 3.4 GHz

DDR memory 16 GB DDR3 SDRAM

Hard disk 1050G NAND Flash

Cloud computing GPU analytics server Ubuntu 16.04

GPU NVIDIA GTX1080ti*2

DDR memory 32 GB DDR3 SDRAM

CPU 6-core, 3.5 GHz
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open reseArch Issues
mAnAgement of heterogeneous resource

Although a multi-layered network can provide 
adaptable and adjustable network resources, it 
also faces the problem of managing the hetero-
geneous resources (i.e., communication, storage, 
and computing resource). This is because there 
are numerous devices in the network, such as 
mobile phones, personal computers, and wear-
able devices, and these devices can be distrib-
uted at different locations in the network with 
constraints of ultra-low latency and ultra-high reli-
ability. Thus, we need to consider how to effec-
tively and automatically manage different types of 
resources. Furthermore, within the edge network, 
resource scheduling and task handover also need 
to be considered. Moreover, the remote cloud 
and edge cloud need to balance communication, 
storage, and computation resources.

InteLLIgent protocoL for mobILIty mAnAgement
More intelligent protocols are necessary for intel-
ligent application task offloading. In the case of 
multiple users, regarding users’ task complexity, 
delay sensitivity, and other factors, different users 
should be assigned different priorities. Network 
resources can be allocated based on the priority 
to improve the overall quality of experience. Fur-
thermore, considering user mobility, incomplete 
acquisition of the information on user trajecto-
ry may lead to the inaccurate prediction of user 
mobility, resulting in higher latency or even failure 
of task offloading. With the increasing number of 
mobile devices, one of the potential solutions is 
to use statistical information on user trajectory to 
selectively pre-fetch possible data and establish 
an intelligent protocol based on mobility trajec-
tory prediction. Finally, task offloading may cause 
high latency or task failure due to unstable net-
work connections and constant change of net-
work access points. Therefore, more intelligent 
protocols are required to guarantee smooth and 
successful resource allocation.

securIty And prIvAcy
Since local devices have limited computing capac-
ity and power, they often need to offload tasks to 
the edge cloud or remote cloud for further pro-
cessing. In this process, the problem of privacy 
leakage and security challenges is urgent and seri-
ous. There are some problems need to be solved, 
for example, how to protect the task on device so 
that unauthorized people cannot access it, how to 
ensure that a task is securely and reliably shared 
between local devices and edge cloud or remote 
cloud, and how to securely store the task data on 
edge cloud and remote clouds.

concLusIon
In this article, we first introduce the architecture 
of iTaskOffloading which includes local device, 
edge cloud, remote cloud, and cognitive engine. 
Then we discuss the method of iTaskOffloding, 
which includes coarse-grained task offloading 
and fine-grained task offloading. After that, tak-
ing emotion detection as an example, we build 
a real testbed to verify the efficiency of the AITO 
scheme. Finally, we list some open research 
issues, which include management of heteroge-
neous resource, intelligent protocol for mobility 
management, security, and privacy.
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