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Abstract—In this paper, unsupervised deep learning solutions
for multiuser single-input multiple-output (MU-SIMO) coherent
detection are extensively investigated. According to the ways
of utilizing the channel state information at the receiver side
(CSIR), deep learning solutions are divided into two groups.
One group is called equalization and learning, which utilizes the
CSIR for channel equalization and then employ deep learning for
multiuser detection (MUD). The other is called direct learning,
which directly feeds the CSIR, together with the received signal,
into deep neural networks (DNN) to conduct the MUD. It is found
that the direct learning solutions outperform the equalization-
and-learning solutions due to their better exploitation of the
sequence detection gain. On the other hand, the direct learning
solutions are not scalable to the size of SIMO networks, as
current DNN architectures cannot efficiently handle many co-
channel interferences. Motivated by this observation, we propose
a novel direct learning approach, which can combine the merits
of feedforward DNN and parallel interference cancellation. It is
shown that the proposed approach trades off the complexity for
the learning scalability, and the complexity can be managed due
to the parallel network architecture.

I. INTRODUCTION

Multiuser multiple-input multiple-output (MU-MIMO) sig-
nal detection over noisy fading channels is mathematically an
integer least-squares (ILS) problem, which aims to minimize
the pairwise Euclidean distance between the transmitted signal
multiplied by channel matrix and the received signal [1].
Concerning the maximum-likelihood solution to be computa-
tionally too expensive, it is usual practice to employ linear
algorithms such as the matched filter (MF), zero forcing
(ZF), and linear minimum mean-square error (LMMSE) to
trade off the optimality for lower computational complexity.
Concerning the linear algorithms often too sub-optimum due to
their uses of symbol-by-symbol detection, enormous research
efforts have been paid in the last two decades, to achieve
the best performance-complexity trade-off through the use
of nonlinear sub-optimal algorithms such as V-BLAST [2],
LMMSE-SIC [3], fixed-complexity sphere decoding (SD) [4],
lattice-reduction (LR) aided detection algorithms [5], and so
forth. A quite comprehensive survey of the MIMO detection
algorithms can be found in [6]; and we can reach two
conclusions: 1) nonlinear algorithms are too complex to afford
by the current DSP technology, and 2) they do not support well
parallel computing which is however the trend of the future
DSP technology.

Recent advances towards the multiuser-MIMO detection
problem lie in the use of deep learning. Notable achievements

so far include model-driving coherent MIMO detection [7]–
[9] and deep learning-aided iterative detection [10], where
deep learning plays a central role of signal detection after the
channel equalization. Deep learning has also been employed
for joint MU-MIMO transmitter and receiver design in [11],
which extends the autoencoder-based approach originally pro-
posed in [12] for single-input single-output (SISO) systems.
In addition to the application for MIMO detection, there are
growing activities of employing deep learning for the physical
layer design, which include recent works on millimeter-wave
channel estimation [13], multiuser-frequency synchronization
[14], FEC decoding [15], blind sequence detection [16] and
channel state information feedback [17], [18]. A relatively
comprehensive survey of deep learning techniques for wireless
communications can be found in [19], [20].

With specific to the MU-MIMO detection, deep learning-
aided solutions have demonstrated their potential of offering
computational complexity close to linear receivers’ in the
communication procedure, without compromising the detec-
tion performance. Moreover, many deep learning solutions
are parallel computing ready. Despite their advantages, major
challenges of deep learning solutions lie in their learning
complexity as well as training data sets, which scale poorly in
multiuser MIMO fading channels.

The aim of this paper is to investigate fundamental be-
haviors of deep learning for MU-MIMO detection through
intensive study of the deep learning gain, training complexity
and data sets scalability. According to the ways of utilizing
channel state information at the receiver side (CSIR), we
classify deep learning solutions into two categories: channel
equalization and learning (CE-L) and direct learning (Direct-
L), with the following definition.

Definition 1: It is called the CE-L mode when deep learn-
ing modules are applied after the channel equalization, and
they do not utilize CSIR to conduct the signal classification
(or equivalently the detection); see Fig. 1. When CSIR and
received signals are both the input to deep learning modules
to enable the signal classification, such is called the Direct-L
mode; see Fig. 2.

Major contributions of this paper lie in:
1) The analysis of deep learning gain in the CE-L mode,

where deep learning modules are employed after the MF, ZF,
or LMMSE channel equalizers. Such combinations are rather
trivial and not novel. However, we show that the deep learning
gain comes mainly from the sequence detection gain, which
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Fig. 1. Block diagram of the CE-L mode for MU-SIMO detection
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Fig. 2. Block diagram of the Direct-L mode for MU-SIMO detection.

can largely improve the performance of the MF-based receiver
(around 8 dB), but not for the ZF or LMMSE ones.

2) An extensive study of the Direct-L mode in terms of
their performances and scalability. It is shown that the Direct-L
mode is able to achieve the maximum-likelihood performance
for very small MIMO (i.e., a system with 2 users) in fading
channels. However, the Direct-L mode is not scalable to
the size of MIMO networks due to the growth of dynamic
interferences.

3) The development of a novel Direct-L approach, which
efficiently combines the feed-forward deep neural network
(FF-DNN) with the parallel interference cancellation (PIC)
to scale up the deep learning solutions. It is shown that
the proposed DNN-PIC approach can achieve near-optimum
performances, with their MIMO detection complexity growing
in a linear order of the number of users in the network.

In addition, it is observed that the Direct-L approaches
can work with the partial CSIR (i.e., the CSIR is known
only for several user-to-receiver links but not all). The users
with known CSIR can enjoy much better performances than
those without the CSIR. This interesting result is the evidence
showing that deep learning utilizes the CSIR as the user
signature to assist the signal classification.

II. MU-SIMO UPLINK MODEL AND MACHINE
LEARNING-AIDED DETECTION

A. MU-SIMO System Model and Optimum Detection

Consider a MU-SIMO system 1, where M UTs simulta-
neously talk to the uplink receiver equipped with N receive
antennas (N ≥ M). The discrete-time equivalent model of
such MU-SIMO system can be expressed by the following
matrix form

y = Hx + v (1)

where x , [x0, ..., xM−1]T stands for a block of transmit-
ted complex-valued symbols with covariance σ2

xI, with each

1We assume each user having a single transmit-antenna to focus our
presentation on the key ideas. An extension to MU-MIMO network is trivial.

symbol independently drawn from a finite-alphabet set A
of the size L = |A|, y , [y0, ..., yN−1]T for the spatial-
domain received block, H for a (N)×(M) MU-SIMO random
channel matrix, and v for the additive white Gaussian noise
(AWGN) with zero mean and variance σ2

vI. Moreover, the
superscript [·]T stands for the matrix/vector transpose, and I
for the identity matrix.

The MU-SIMO detection problem is to form the decision x̂
based upon the received block y as well as the channel matrix
H. The maximum-likelihood solution (or equivalently the
sphere decoding) is ILS-optimum by achieving the following
objective

x̂ = arg min
x∈AM

‖y −Hx‖2 (2)

where ‖·‖ denotes the Euclidean norm.
B. Machine Learning-Aided Detection and Challenges

In theory, a machine is able to learn a Bayesian-optimum
solution (equivalent to the maximum-likelihood solution as far
as the AWGN case is concerned) to the ILS problem (2). The
basic principle of machine learning can be stated by:

Proposition 1 (See [11]): Given the channel matrix H and
the training data set x ∈ A, machine learning will establish the
link between y and Hx according to the maximum a posteriori
probability p(Hx|y).

For a fixed channel matrix H, we have the maximum a
posteriori probability p(Hx|y) = p(x|y); and in this case,
the training data set grows exponentially with the number of
users M . Nevertheless, the size of training data set is finite,
and as usual practice, the machine learning complexity can be
managed through parallel computing.

The major challenge arises when the channel matrix H is
randomly varying, as such effectively renders the training data
set infinite. More seriously, the randomness of H can result
in channel ambiguity, i.e., the received signal y might have
multiple combinations of H and x even in the noiseless case,
in which machine learning will fail to conduct the signal
classification. Theoretically, the channel ambiguity can be
resolved if the machine is given the full channel knowledge
as a part of the training data, as we have the relationship
p(Hx|y) = p(x|y,H) held. However, the H-defined training
data grows in a square-order of M , while the information data
x grows only linearly. We call such a phenomenon ‘CSIR
flooding’, which will confuse the machine at the learning
stage. This problem, if not get appropriately resolved, will
induce poor scalability to the machine learning procedure. In
Section III, we will study how and to what extent the machine
learning-aided techniques (as a promising machine learning
technology) can tackle this problem.

III. MACHINE LEARNING-AIDED MU-SIMO DETECTION

A. The CE-L Mode

Definition 1 indicates that the CE-L mode has two steps:

Channel equalization: z = Wy = WHx + Wv (3)
Detection: x̂ = Γ(z) (4)



where z stands for the channel equalized signal block, Γ(·)
for the decision function which can be replaced by a machine-
learned function if appropriate, W for a linear filter specified
by

W ,





(HHH)−1HH , ZF equalizer
(HHH + σ2

vI)
−1HH , LMMSE equalizer

HH , MF equalizer
(5)

and the superscript [·]H denotes the matrix/vector Hermitian
transpose. Now, the signal detection problem becomes

x̂ = arg min
x∈AM

‖z−WHx‖2 (6)

The signal detection performance depends on the ways of
making decision. When the decision is made upon each
individual user, the performance can be evaluated by the
signal-to-interference and noise ratio (SINR)

sinrm=
γ0[WHHHWH ]m det(Q)

det (Q̃)
, m=0,...,M−1 (7)

Q= WWH + γ0(WH̃)(WH̃)H (8)

where sinrm stands for the instantaneous SINR for the mth

user, [·]m for the (m,m)th diagonal entry of a matrix, H̃ for
the matrix formed by removing the mth column of H, Q̃ for
the matrix formed by removing the mth column of Q, and
γ0 , (σ2

x)/(σ2
v). Then, the system capacity is given by

Cs =

M−1∑

m=0

log(1 + sinrm) (9)

When the decision is made upon the sequence z, the system
capacity is given by

Cseq = log
(det(WWH + γ0WHHHWH)

det(WWH)

)
(10)

The sequence detection gain can be evaluated by

G = Cseq − Cs (11)

Proposition 1 shows that machine learning maps the sequence
z onto the sequence x according to the the maximum a pos-
teriori probability and follows exactly the sequence detection
principle. Hence, we can also call G the machine learning
gain.

1) The ZF-L mode: Considering W to be the linear
ZF filter, we will have [(WH̃)(WH̃)H ]m = 0 and
[(WH)(WH)H ]m = 1, and can easily obtain Cseq = Cs
through (7) and (10). This basically means no machine learn-
ing gain as G = 0.

2) The LMMSE-L mode: The only difference between the
LMMSE-L mode and the ZF-L mode lies in the regularization
factor (σ2

vI) in (5). For the high SNR regime where the reg-
ularization factor becomes negligible, we can reach the same
conclusion as the ZF-L mode, i.e., G = 0. For the low SNR
regime, sequence detections do not have considerable gain, as
they take advantage of more degrees-of-freedom (DoF) due to
signal correlations, which dominate the performance only at
high SNRs.

3) The MF-L mode: Given W = HH , the SINR term in
(7) becomes

sinrm=
γ0[HHHHHH]m det(QMF)

det (Q̃MF)
(12)

QMF= HHH + γ0(HHH̃)(H̃HH) (13)

and Q̃MF is the corresponding version of QMF. At high SNRs,
(13) approximates to

QMF ≈ γ0HHH̃H̃HH (14)

Applying (14) into (12) and (9) leads to

Cs ≈
M−1∑

m=0

log
(

1 +
[HHHHHH]m

det (Q̃MF)/ det(HHH̃H̃HH)

)
(15)

Similarly, we can apply W = HH into (10) and obtain

Cseq= log
(det(HHH + γ0H

HHHHH)

det(HHH)

)
(16)

=

M−1∑

m=0

log(1 + γ0λm) (17)

where λm denotes the mth eigenvalue of (HHH). With the
increase of γ0, Cseq grows in a logarithmic scale, and Cs keeps
constant. It is trivial to justify Cseq > Cs at high SNRs. This
means that there is a potential machine-learning gain in the
MF-L mode.

B. The Direct-L Mode

According to Definition 1, the Direct-L mode applies the
machine-learned detection function directly on the received
block y, i.e., x̂ = Γ(y|H). The data processing inequality
implies: I(y;x|H) ≥ I(z;x|H), where I(; ) denotes the
mutual information. Therefore, the Direct-L mode should
outperform the CE-L mode from the information-theoretic
point of view. In Section IV, we will study how to employ
deep learning to realize the MU-SIMO detection function, and
what are the pros/cons for both the CE-L and Direct-L modes.

IV. DEEP LEARNING FOR MU-SIMO DETECTION

Deep learning is a special paradigm of machine learning
which employs a well-trained DNN to replace the decision
function Γ(z) in the CE-L mode or Γ(y|H) in the Direct-L
mode. The learning results are stored in form of weighting
coefficients and biases of neural networks.

A. Deep Learning for the CE-L Mode

Fig. 1 illustrates the block diagram of the CE-L mode for
the MU-SIMO detection. There are a set of independent user
terminals (UTs) at the transmitter side. Each UT modulates
their information bits, sm, into the symbol, xm, and transmits
them through the mobile fading channel H. At the receiver
side, the received signal y is first fed into the linear channel
equalizer, of which the output, z, is then fed into the DNN-
based decision module, Γ(z). The output of Γ(z) is the binary
decision, ŝm, instead of the modulation symbol, xm. This
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ŝ
(1)
1

ŝ
(1)
M

Regenerated

DNN

Receiver 2

Regenerated

Regenerated ···

F
in

a
l 

D
ec

is
io

n
 

···
ŝ1

ŝ2

ŝM

x̂
(1)
1

x̂
(1)
M

ŝ
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Fig. 3. Block diagram of the novel Direct-L algorithm combing DNN with PIC.

is because binary bits are the ultimate goal of the receiver
procedure. It is perhaps worth noting that communication
signals are often complex valued, and current neural networks
are based on real-value operations. Thus, a (M)×(1) complex
signal block must be represented by a (2M)× (1) real-valued
block (see [1]) to facilitate the learning and communication
procedure.

The deep learning procedure can be found in Section V
(Experiment 1). In the CE-L mode, the training data is z,
which is the superposition of x and the Gaussian noise
(Wv). As also discussed in Section III, such forms the major
advantage of the CE-L mode, as the training data set is
effectively a noisy version of x, which is drawn from a finite-
alphabet set. By such means, we can avoid or largely mitigate
the channel model overfitting problem 2.

B. Deep Learning for the Direct-L Mode

Fig. 2 illustrates the block diagram of the Direct-L mode for
MU-SIMO detection. It differs from the CE-L mode mainly
at the receiver side, where there are two inputs to the DNN-
based decision module, i.e., y and H. Concerning the input
layer of DNN often a column vector, we suggest reshape the
channel matrix H into a (NM)× (1) column vector denoted
by h, and then form a super vector [yT ,hT ]T to serve as the
input to the DNN in both the learning and communication
procedure. Although h is involved in the learning procedure,
the learning objective is to minimize the difference (e.g., the
cross-entropy) between the original information bits and the
decoded bits only.

Simulation results in Section V show that the above design
is able to mitigate the channel ambiguity and offer better
detection performance than the CE-L mode. Moreover, this
approach could work even in the absence of full CSIR, i.e.,
only part of h is available at the receiver side; see detail in
Section V (Experiment 2).

2The channel model overfitting problem occurs when a DNN trained for a
special channel model is not suitable for another channel model.

Despite those remarkable advantages, the Direct-L mode is
not scalable to the number of UTs due to the so called “CSIR
flooding” problem, highlighted in Section I, which largely
reduce the inter-user interference cancellation ability of the
DNN. This problem motivates us to develop a novel approach
combining the merits of direct learning and PIC.

C. The DNN-PIC Approach

Fig. 3 illustrates the block diagram of the proposed DNN-
PIC receiver. The entire receiver consists of M cascaded PIC
stages, with each employing a group of identical pre-trained
DNNs for signal detection. All of the DNNs share the same
structure as the DNN used in the Direct-L mode (see Fig.
2). The input to the first-stage consists of the full CSIR, h,
and the received signal, y. The output of the first stage is the
estimated information bits ŝ(1)m , 1≤m≤M , where the superscript
[·](1) stands for the stage number. Denote hm to the channel
vector between the mth UT to the receiver, and x̂(1)m , 1≤m≤M
to the regenerated transmitted symbols. We can subtract the
user interference from the received signal by

y(1)
m = y − hmx̂

(1)
m , 1≤m≤M (18)

which, together with the corresponding CSIR, h(1)
m , serves the

input to the second-stage DNNs. Note that h(1)
m is formed by

removing hm from h. Repeating the interference cancellation
for M times, we will be able to obtain M ! estimates of the
information-bearing symbols as depicted in Fig. 3. The final
decision is made by taking average of the relevant estimates.

The proposed DNN-PIC receiver has a parallel computing
structure, which is an advantage to reduce the computational
latency. Despite, the computational complexity of the “tree”
traversal seems to be still too expensive. According to the
system model in Section II-A, the MU-SIMO channel is
randomly generated, and x is drawn independently from a
finite-alphabet set with the equal probability. The Direct-L
mode achieves the same average error probability for each
independent user. Therefore, the DNN-PIC receiver can be
simplified into two “branches” with no performance penalty.
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V. COMPUTER SIMULATIONS AND DISCUSSION

Our computer simulations are structured into three experi-
ments with respect to the CE-L mode, the Direct-L mode and
the proposed DNN-PIC approach. The performance is evalu-
ated using the bit error rate (BER) averaging over sufficient
Monte-Carlo trials of block Rayleigh fading channels, and
compared to widely used baselines under different channel
conditions. The SNR is defined as the average received bit-
energy to noise ratio (Eb/N0).

Experiment 1 (The CE-L Mode): In this experiment, we
evaluate the BER performance of the CE-L mode under BPSK
modulation according to the setup specified in Section IV-A
and Fig. 1. Training is conducted using mini-batch stochastic
gradient descent with Adam optimizer at the learning rate α =
0.001 (see [21] for the detailed description). The loss function
is categorical cross-entropy. The mini-batch size of each epoch
is 1000, and the DNN is trained at Eb/N0 = 5 dB; as this
configuration is found to provide the best performance.

Fig. 4 shows the BER performance of the CE-L mode with
different channel equalizers. The baseline for performance
comparison is obtained using conventional symbol-by-symbol
detection algorithm. It is shown that deep learning modules
largely improve the performance of the MF-based receiver
(around 8 dB at BER of 10−3). The performance gain mainly
comes from the sequence detection as we discussed in Section
III-A. For both ZF and LMMSE receiver, the deep learning
gain is almost negligible since there is no correlation among
the equalized symbols.

Experiment 2 (The Direct-L Mode): In this experiment, we
evaluate the BER performance of the Direct-L mode under
BPSK modulation according to the setup specified in Section
IV-B and Fig. 2. Instead of using linear equalizer, we give the
DNN receiver full channel knowledge as a part of the training
data to resolve channel ambiguity. Moreover, we demonstrate
that the Diret-L approach can work with partial CSIR ( i.e.,
the CSIR is known for part of the user-to-receiver links). The
DNN is trained at Eb/N0 = 0 dB, and the rest of the network
setup remains the same as Experiment 1.

-15 -10 -5 0 5

Eb/No (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

2x8 MU-SIMO, Direct-L with no CSIR

2x8 MU-SIMO, Direct-L with full CSIR

2x8 MU-SIMO, UT1, Direct-L with UT1's CSIR

2x8 MU-SIMO, UT2, Direct-L with UT1's CSIR

Fig. 5. BER as a function of Eb/N0 for the Direct-L mode in uncoded
2-by-8 MU-SIMO system.

Fig. 5 shows the BER performance of the Direct-L mode
with different levels of CSIR. The baseline for performance
comparison is the maximum likelihood receiver. For the un-
coded 2-by-8 MU-SIMO communications, it is found that
DNN receiver fails to detect the transmitted waveform without
CSIR since the received signals might have multiple combina-
tions of channel and transmitted signals. Consider the receiver
has full CSIR, the Direct-L approach achieves near-optimal
performance almost throughout the whole SNR range. The
most interesting phenomenon is that the Direct-L approach
can work with partial CSIR. Consider the CSIR is known
only for UT1-to-receiver link, we observe that UT1 enjoys
a much better performance than UT2. The performance gap
between UT1 and the ML receiver is caused by the co-channel
interference from UT2. This result shows that deep learning
utilizes the CSIR as the user signature to assist the signal
classification.

Experiment 3 (The proposed DNN-PIC receiver): In this
experiment, we conduct the proposed DNN-PIC receiver in
uncoded 4-by-8 MU-SIMO system based on the system con-
figurations specified in Section IV-C and Fig. 3. With the
spatial-domain user increasing, we observe that the BER
performance is highly influenced by the training SNR point.
For all the BER performance plots in this experiment, the
training results from three different Eb/N0 points (e.g., 0 dB,
5 dB and 10 dB) are merged to yield the best performance
throughout the whole SNR range.

Fig. 6 shows the BER performance of the proposed DNN-
PIC approach in uncoded 4-by-8 MU-SIMO system. The
baselines for performance comparison includes: the coherent
ZF receiver, the maximum likelihood receiver as well as the
Direct-L approach. It is shown that the performance of the
Direct-L approach quickly moves away from optimum with
increasing spatial-domain user load. This is potentially caused
by the CSIR flooding which confuses the machine at the
learning stage. Meanwhile, the proposed DNN-PIC approach
largely improves the detection performance of the Direct-L
approach which is around 1.5 dB for BPSK and 3 dB for
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QPSK at BER of 10−3. In addition, the performance gap
between the proposed approach and the maximum-likelihood
receiver is around 0.2 dB and 1.5 dB at BER of 10−3 for
BPSK and QPSK, respectively.

VI. CONCLUSION

In this paper, we have conducted an extensive study of
deep learning solutions for MU-SIMO coherent detection with
specific to the EC-L mode and the Direct-L mode. It has
been shown that the machine learning (or deep learning)
gain mainly comes from the nature of sequence detection (or
classification) inherent in the learning procedure. This conclu-
sion is justified through theoretical analysis and confirmed by
computer simulations. It has been shown that deep learning
could not bring extra gain to the ZF or LMMSE MU-SIMO
receiver due to their nature of enabling the symbol-by-symbol
detection; however, it could contribute significant gain (8 dB in
Eb/N0) to the MF receiver due to a better use of the residual
interferences between users to form the sequence detection.
Given the same principle, the Direct-L mode could enjoy fully
the sequence detection gain in theory, but face the practical
challenge of DNN scalability to the number of users. To tackle
this problem, a novel DNN-PIC approach has been proposed
to enrich the Direct-L mode. The proposed approach exhibited
near-optimum performances with linearly growing complexity
to the number of users.
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